Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ques này nhiều ng` hỏi r` thay ab+bc+ca=1 vào rồi phân tích rút gọn
Do ab + bc + ca = 1 nên ta có :
\(a\sqrt{\frac{\left(b^2+1\right)\left(c^2+1\right)}{a^2+1}}=a\sqrt{\frac{\left(b^2+ab+ac+bc\right)\left(c^2+ab+ac+bc\right)}{a^2+ab+ac+bc}}\)
\(=a\sqrt{\frac{\left(a+b\right)\left(b+c\right)\left(a+c\right)\left(b+c\right)}{\left(a+b\right)\left(a+c\right)}}=a\sqrt{\left(b+c\right)^2}=a\left(b+c\right)=ab+ac\text{ }\left(1\right)\)
Tương tự : \(b\sqrt{\frac{\left(a^2+1\right)\left(c^2+1\right)}{b^2+1}}=ab+bc\) (2)và \(c\sqrt{\frac{\left(b^2+1\right)\left(a^2+1\right)}{c^2+1}}=bc+ac\) (3)
Cộng vế với vế của (1) ; (2) ; (3) lại ta được :
\(a\sqrt{\frac{\left(b^2+1\right)\left(c^2+1\right)}{a^2+1}}+b\sqrt{\frac{\left(a^2+1\right)\left(c^2+1\right)}{b^2+1}}+c\sqrt{\frac{\left(b^2+1\right)\left(a^2+1\right)}{c^2+1}}=2\left(ab+bc+ac\right)=2\)
\(gt\Rightarrow1=\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\)
\(\Rightarrow\frac{1}{a^2}+1=\frac{1}{a^2}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=\left(\frac{1}{a}+\frac{1}{b}\right)\left(\frac{1}{a}+\frac{1}{c}\right)\)
\(\frac{1}{ab}\sqrt{\frac{\left(a^2+1\right)\left(b^2+1\right)}{c^2+1}}=\sqrt{\frac{\left(1+\frac{1}{a^2}\right)\left(1+\frac{1}{b^2}\right)}{c^2\left(1+\frac{1}{c^2}\right)}}\)
\(=\frac{1}{c}.\sqrt{\frac{\left(\frac{1}{a}+\frac{1}{b}\right)\left(\frac{1}{a}+\frac{1}{c}\right)\left(\frac{1}{b}+\frac{1}{a}\right)\left(\frac{1}{b}+\frac{1}{c}\right)}{\left(\frac{1}{c}+\frac{1}{a}\right)\left(\frac{1}{c}+\frac{1}{b}\right)}}=\frac{1}{c}\sqrt{\left(\frac{1}{a}+\frac{1}{b}\right)^2}\)
\(=\frac{1}{c}\left(\frac{1}{a}+\frac{1}{b}\right)=\frac{1}{bc}+\frac{1}{ca}\)
Tương tự với các cụm còn lại, ta được
\(A=2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)=2\)
bài này khó thật, nhưng bạn đừng buồn, sẽ có nhiều bạn khác giúp bạn
nha Nguyễn Quang Linh à
đề bài
cm
1/a+2 + 1/b+2 +1/c+2 <=1
bn p viết đề chứ???
##thiêndi###
\(7\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2}{ab}+\frac{2}{bc}+\frac{2}{ca}\right)=20\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)=2019\)
\(\Leftrightarrow7\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=20\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)+2019\)
\(\Rightarrow7\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\le\frac{20}{3}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2+2019\)
\(\Rightarrow\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\le6057\)
\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\le3\sqrt{673}\)
Ta có:
\(\sqrt{\left(2+1\right)\left(2a^2+b^2\right)}\ge\sqrt{\left(2a+b\right)^2}=2a+b\)
\(\Rightarrow\frac{1}{\sqrt{3\left(2a^2+b^2\right)}}\le\frac{1}{2a+b}\le\frac{1}{9}\left(\frac{2}{a}+\frac{1}{b}\right)\)
Tương tự: \(\frac{1}{\sqrt{3\left(2b^2+c^2\right)}}\le\frac{1}{9}\left(\frac{2}{b}+\frac{1}{c}\right)\) ; \(\frac{1}{\sqrt{3\left(2c^2+a^2\right)}}\le\frac{1}{9}\left(\frac{2}{c}+\frac{1}{a}\right)\)
Cộng vế với vế:
\(P\le\frac{1}{3}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\le\sqrt{673}\)
\(P_{max}=\sqrt{673}\) khi \(a=b=c=\frac{1}{\sqrt{673}}\)
Ta có:
\(1+a^2=ab+bc+ca+a^2=\left(a+b\right)\left(a+c\right)\)tương tự ta tính được GT của bt.