K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 8 2020

Ta chứng minh:\(\sqrt{a+bc}\ge a+\sqrt{bc}\)

\(\Leftrightarrow a+bc\ge a^2+bc+2a\sqrt{bc}\)

\(\Leftrightarrow a\ge a^2+2a\sqrt{bc}\)\(\Leftrightarrow a\ge a\left(a+2\sqrt{bc}\right)\Leftrightarrow1\ge a+2\sqrt{bc}\Leftrightarrow a+b+c\ge a+2\sqrt{bc}\)

\(\Leftrightarrow b+c-2\sqrt{bc}\ge0\Leftrightarrow\left(\sqrt{b}-\sqrt{c}\right)^2\ge0\)(luôn đúng)

\(\Leftrightarrow\sqrt{a+bc}\ge a+\sqrt{bc}\)

CMTT\(\sqrt{b+ca}\ge b+\sqrt{ca}\)

          \(\sqrt{c+ab}\ge c+\sqrt{ab}\)

\(\Leftrightarrow\sqrt{a+bc}+\sqrt{b+ca}+\sqrt{c+ab}\ge a+b+c+\sqrt{ab}+\sqrt{bc}+\sqrt{ca}=1+\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\)Vậy ......

(Dấu = xảy ra (=) a=b=c=1/3

10 tháng 7 2017

sai đề rồi nhé =))

24 tháng 8 2019

MV xem nào;) Nhưng em ko chắc đâu nhá!

Đặt \(t=\frac{a+b}{2};f\left(a;b;c\right)=VT\). Xét:

\(f\left(a;b;c\right)-f\left(t;t;c\right)=ab-t^2+c\left(a+b-2t\right)-c\left(ab-t^2\right)\)

\(=\left(1-c\right)\left(ab-t^2\right)\le0\forall0< a,b,c< 1\) (chỉ cần nhận ra \(ab\le\frac{\left(a+b\right)^2}{4}=t^2\) là xong:v)

Do đó \(f\left(a;b;c\right)\le f\left(t;t;c\right)\). Ta sẽ chứng minh:

\(f\left(t;t;c\right)\le\frac{8}{27}\Leftrightarrow f\left(t;t;1-2t\right)\le\frac{8}{27}\)

Đến đây chắc ok rồi nhỉ? Hàm số 1 biến?

5 tháng 2 2020

Giả sử \(c=min\left\{a,b,c\right\}\Rightarrow1=a^2+b^2+c^2+2abc\ge2c^3+3c^2\Rightarrow c\le\frac{1}{2}\)

Chọn t > 0 thỏa mãn: \(\hept{\begin{cases}2t^2+c^2+2t^2c=1\left(1\right)\\2t^2+c^2+2t^2c=a^2+b^2+c^2+2abc\left(2\right)\end{cases}}\) (từ (1) ta mới có (2):v)

(2) \(\Rightarrow2c\left(t^2-ab\right)=a^2+b^2-2t^2\).

Ta thấy rằng, nếu\(t^2< ab\) thì:\(2t^2>a^2+b^2\ge2ab\Rightarrow t^2>ab\) (mâu thuẫn).

Vì vậy: \(t^2\ge ab\Rightarrow a^2+b^2\ge2t^2\). Bây giờ đặt P = f(a;b;c)

Xét: \(f\left(a;b;c\right)-f\left(t;t;c\right)=\left(c-1\right)\left(t^2-ab\right)+c\left(a+b-2t\right)\)

\(=\left(c-1\right)\left(t^2-ab\right)+\frac{c\left(a^2+b^2-2t^2\right)+2c\left(ab-t^2\right)}{a+b+2t}\)\(=\left(c-1\right)\left(t^2-ab\right)+\frac{2c^2\left(t^2-ab\right)-2c\left(t^2-ab\right)}{a+b+2t}\)

\(=\left(c-1\right)\left(t^2-ab\right)\left(1+\frac{2c}{a+b+2t}\right)\le0\)

Do đó \(f\left(a;b;c\right)\le f\left(t;t;c\right)=f\left(t;t;1-2t^2\right)\).

\(=\frac{1}{8}\left(2c-1\right)^2\left[\left(2c-1\right)^2-6\right]+\frac{5}{8}\le\frac{5}{8}\)

Cách rất dài và hại não, tối rồi em lười check lại quá:((

19 tháng 7 2020

Áp dụng Cauchy Schwarz ta dễ có:

\(\frac{1}{a^2+b^2+c^2}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\)

\(\ge\frac{1}{a^2+b^2+c^2}+\frac{9}{ab+bc+ca}\)

\(=\left(\frac{1}{a^2+b^2+c^2}+\frac{1}{ab+bc+ca}+\frac{1}{ab+bc+ca}\right)+\frac{7}{ab+bc+ca}\)

\(\ge\frac{9}{\left(a+b+c\right)^2}+\frac{7}{\frac{\left(a+b+c\right)^2}{3}}=30\)

Đẳng thức xảy ra tại a=b=c=1/3

20 tháng 7 2020

giúp em hiểu chỗ \(\frac{7}{ab+bc+ca}\Rightarrow\frac{7}{\frac{\left(a+b+c\right)^2}{3}}\)

17 tháng 2 2020

https://olm.vn/hoi-dap/detail/239526218296.html

27 tháng 2 2020

Sử dụng phân tích tuyệt vời của Ji Chen:

\(VT-VP=\frac{4\left(a+b+c-2\right)^2+abc+3\Sigma a\left(b+c-1\right)^2}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge0\)

23 tháng 8 2019

Bài làm:

Mk cx ko chắc nx nha !

\(\frac{1}{a+b+1}+\frac{1}{b+c+1}+\frac{1}{c+a+1}\)

\(=3-\left(\frac{a+b}{a+b+1}+\frac{b+c}{b+c+1}+\frac{c+a}{c+a+1}\right)\)(mk không biết cách viết nên ns nhé, tổng trong ngoặc { m, là

cái Tổng trong ngoặc dưới tổng có một dấu ngoặc nhọn, dưới dấu ngặc nhọn có M}

Áp dụng BĐT Cauchy-Schwarz:

\(M=\frac{\left(a+b\right)^2}{\left(a+b\right)\left(a+b+1\right)}+\frac{\left(b+c\right)^2}{\left(b+c\right)\left(b+c+1\right)}+\frac{\left(c+a\right)^2}{\left(c+a\right)\left(c+a+1\right)}\)\(\ge\frac{4\left(a+b+c\right)^2}{\left(a+b\right)\left(a+b+1\right)\left(b+c\right)\left(b+c+1\right)\left(c+a\right)\left(c+a+1\right)}\)

\(=\frac{4\left(a^2+b^2+c^2+2ab+2bc+2ca\right)}{2\left(a^2+b^2+c^2+ab+bc+ca\right)+2\left(a+b+c\right)}\ge\frac{4\left(a^2+b^2+c^2+2ab+2bc+2ca\right)}{2\left(a^2+b^2+c^2+ab+bc+ca\right)+2\left(ab+bc+ca\right)}\)

\(=2\)

(Do \(a+b+c\le ab+bc+ca\))

Vậy \(M\ge2\)

\(\Rightarrow\frac{1}{a+b+1}+\frac{1}{b+c+1}+\frac{1}{c+a+1}=3-M\le1\)(Đpcm)

Dấu ''='' xảy ra khi a=b=c=1

4 tháng 9 2019

Chép bài à bn tại sao \(A=\frac{1}{a+b+1}\) thế 2 ở bên kia đ?

Hơn nữa bất đẳng thức bn sai bét rồi người ta bảo bất đẳng thức bên kia mà sao bạn cho tổng luôn 

3- lấy đâu ra kết quả phải là \(2^2\)chứ 

Nếu ghi sai đề bài là bn sai cả bài k chắc đ :)

Ngoài ra các tổng bên ngoặc k có 4 hay 2 gì hết sai hết r nhé 

3 tháng 2 2020

1.Ta có: \(c+ab=\left(a+b+c\right)c+ab\)

\(=ac+bc+c^2+ab\)

\(=a\left(b+c\right)+c\left(b+c\right)\)

\(=\left(b+c\right)\left(a+b\right)\)

CMTT \(a+bc=\left(c+a\right)\left(b+c\right)\)

\(b+ca=\left(b+c\right)\left(a+b\right)\)

Từ đó \(P=\sqrt{\frac{ab}{\left(a+b\right)\left(b+c\right)}}+\sqrt{\frac{bc}{\left(c+a\right)\left(a+b\right)}}+\sqrt{\frac{ca}{\left(b+c\right)\left(a+b\right)}}\)

Ta có: \(\sqrt{\frac{ab}{\left(a+b\right)\left(b+c\right)}}\le\frac{1}{2}\left(\frac{a}{a+b}+\frac{b}{b+c}\right)\)( theo BĐT AM-GM)

CMTT\(\Rightarrow P\le\frac{1}{2}\left(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{a+c}+\frac{b}{a+b}+\frac{c}{b+c}+\frac{a}{a+b}\right)\)

\(\Rightarrow P\le\frac{1}{2}.3\)

\(\Rightarrow P\le\frac{3}{2}\)

Dấu"="xảy ra \(\Leftrightarrow a=b=c\)

Vậy /...

3 tháng 2 2020

\(\frac{a+1}{b^2+1}=a+1-\frac{ab^2-b^2}{b^2+1}=a+1-\frac{b^2\left(a+1\right)}{b^2+1}\ge a+1-\frac{b^2\left(a+1\right)}{2b}\)

\(=a+1-\frac{b\left(a+1\right)}{2}=a+1-\frac{ab+b}{2}\)

Tương tự rồi cộng lại:

\(RHS\ge a+b+c+3-\frac{ab+bc+ca+a+b+c}{2}\)

\(\ge a+b+c+3-\frac{\frac{\left(a+b+c\right)^2}{3}+a+b+c}{2}=3\)

Dấu "=" xảy ra tại \(a=b=c=1\)