Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3/ Áp dụng bất đẳng thức AM-GM, ta có :
\(\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}\ge2\sqrt{\dfrac{\left(ab\right)^2}{\left(bc\right)^2}}=\dfrac{2a}{c}\)
\(\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\ge2\sqrt{\dfrac{\left(bc\right)^2}{\left(ac\right)^2}}=\dfrac{2b}{a}\)
\(\dfrac{c^2}{a^2}+\dfrac{a^2}{b^2}\ge2\sqrt{\dfrac{\left(ac\right)^2}{\left(ab\right)^2}}=\dfrac{2c}{b}\)
Cộng 3 vế của BĐT trên ta có :
\(2\left(\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\right)\ge2\left(\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\right)\)
\(\Leftrightarrow\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\ge\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\left(\text{đpcm}\right)\)
Bài 1:
Áp dụng BĐT AM-GM ta có:
\(\frac{1}{a^2+bc}+\frac{1}{b^2+ac}+\frac{1}{c^2+ab}\leq \frac{1}{2\sqrt{a^2.bc}}+\frac{1}{2\sqrt{b^2.ac}}+\frac{1}{2\sqrt{c^2.ab}}=\frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ac}}{2abc}\)
Tiếp tục áp dụng BĐT AM-GM:
\(\sqrt{bc}+\sqrt{ac}+\sqrt{ab}\leq \frac{b+c}{2}+\frac{c+a}{2}+\frac{a+b}{2}=a+b+c\)
Do đó:
\(\frac{1}{a^2+bc}+\frac{1}{b^2+ac}+\frac{1}{c^2+ab}\leq \frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}{2abc}\leq \frac{a+b+c}{2abc}\) (đpcm)
Dấu "=" xảy ra khi $a=b=c$
Hân đz đã đến :v giờ lm nha
Ta có: \(a^3=a\cdot a^2\)
\(\Rightarrow a^3+a\cdot b^2=a\cdot a^2+a\cdot b^2=a\left(a^2+b^2\right)\)
\(\Rightarrow\dfrac{a^3}{a^2+b^2}=\dfrac{a\left(a^2+b^2\right)-ab^2}{a^2+b^2}=a-\dfrac{ab^2}{a^2+b^2}\)(*)
Ta có: \(a^2+b^2\ge2\sqrt{a^2b^2}=2ab\)
\(\Rightarrow\dfrac{ab^2}{a^2+b^2}\le\dfrac{ab^2}{2ab}=\dfrac{b}{2}\)
\(\Rightarrow\dfrac{a^3}{a^2+b^2}\ge a-\dfrac{b}{2}\)
Tương tự: \(\dfrac{b^3}{b^2+c^2}\ge b-\dfrac{c}{2}\); \(\dfrac{c^3}{c^2+a^2}\ge c-\dfrac{a}{2}\)
Cộng 3 bđt trên ta có:
\(\dfrac{a^3}{a^2+b^2}+\dfrac{b^3}{b^2+c^2}+\dfrac{c^3}{c^2+a^2}\ge a+b+c-\dfrac{b}{2}-\dfrac{c}{2}-\dfrac{a}{2}=\dfrac{a+b+c}{2}\)
''='' xảy ra khi \(a=b=c\)
\(A=\dfrac{a^4}{a\left(b+c\right)}+\dfrac{b^4}{b\left(a+c\right)}+\dfrac{c^4}{c\left(a+b\right)}\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{2ab+2ac+2bc}\)
\(A\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{a^2+b^2+a^2+c^2+b^2+c^2}=\dfrac{a^2+b^2+c^2}{2}=\dfrac{3}{2}\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c=1\)
Áp dụng BĐT Cô si Ta có : \(\dfrac{a}{b^2+1}=a-\dfrac{ab^2}{b^2+1}\ge a-\dfrac{ab^2}{2b}=a-\dfrac{ab}{2}\)
\(\dfrac{b}{c^2+1}=b-\dfrac{c^2b}{c^2+1}\ge b-\dfrac{c^2b}{2c}=b-\dfrac{cb}{2}\)
\(\dfrac{c}{a^2+1}=c-\dfrac{a^2c}{a^2+1}\ge c-\dfrac{a^2c}{2a}=c-\dfrac{ac}{2}\)
Cộng ba vế BĐT lại ta được:
\(\dfrac{a}{b^2+1}+\dfrac{b}{c^2+1}+\dfrac{c}{a^2+1}\ge a+b+c-\left(\dfrac{ab+bc+ac}{2}\right)\)
Ta có đánh giá quen thuộc \(ab+bc+ac\le\dfrac{\left(a+b+c\right)^2}{3}=\dfrac{9}{3}=3\)
\(\Rightarrow\dfrac{a}{b^2+1}+\dfrac{b}{c^2+1}+\dfrac{c}{a^2+1}\ge3-\dfrac{3}{2}=\dfrac{3}{2}\)(ĐPCM)
Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:
\(VT=\dfrac{a}{b+2c+3d}+\dfrac{b}{c+2d+3a}+\dfrac{c}{d+2a+3b}+\dfrac{d}{a+2b+3c}\)
\(=\dfrac{a^2}{ab+2ac+3ad}+\dfrac{b^2}{bc+2bd+3ab}+\dfrac{c^2}{cd+2ac+3bc}+\dfrac{d^2}{ad+2bd+3cd}\)
\(\ge\dfrac{\left(a+b+c+d\right)^2}{4\left(ab+ad+bc+bd+ca+cd\right)}\ge\dfrac{\left(a+b+c+d\right)^2}{\dfrac{3}{2}\left(a+b+c+d\right)^2}=\dfrac{2}{3}\)
*Chứng minh \(4\left(ab+ad+bc+bd+ca+cd\right)\le\dfrac{3}{2}\left(a+b+c+d\right)^2\)
\(\Leftrightarrow\left(a-b\right)^2+\left(a-d\right)^2+\left(b-c\right)^2+\left(b-d\right)^2+\left(a-c\right)^2+\left(c-d\right)^2\ge0\)
Ta có:
\(\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}+1=\dfrac{a^2}{ab}+\dfrac{b^2}{bc}+\dfrac{c^2}{ca}+\dfrac{b^2}{b^2}\)
\(\ge\dfrac{\left(a+2b+c\right)^2}{ab+bc+ca+b^2}=\dfrac{\left(a+b\right)^2+2\left(a+b\right)\left(b+c\right)+\left(b+c\right)^2}{\left(a+b\right)\left(b+c\right)}\)
\(=\dfrac{a+b}{b+c}+\dfrac{b+c}{a+b}+2\)
Sorry bác Neet tới đây e bí mất
Ta có: \(\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\ge3.\sqrt[3]{\dfrac{a}{b}.\dfrac{b}{c}.\dfrac{c}{a}}=3\)(1)
\(\dfrac{a+b}{b+c}+\dfrac{b+c}{a+b}\ge2.\sqrt{\dfrac{a+b}{b+c}.\dfrac{b+c}{a+b}}=2\)
\(\Leftrightarrow\dfrac{a+b}{b+c}+\dfrac{b+c}{a+b}+1\ge3\)(2)
Từ (1), (2), ta có: \(\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}-\dfrac{a+b}{b+c}-\dfrac{b+c}{a+b}-1\ge0\)
\(\Leftrightarrow\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\ge\dfrac{a+b}{b+c}+\dfrac{b+c}{a+b}+1\)
Dấu "=" xảy ra khi \(a=b=c\)
3.
\(\dfrac{2a^2}{b^2}+2\dfrac{b^2}{c^2}+2\dfrac{c^2}{a^2}\ge2\left(\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\right)\)
áp dụng bất đẳng thức cosi
+ \(\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}\ge2\dfrac{a}{c}\)
......
tương tự với 2 cái sau
Chứng minh rằng: - K2PI – TOÁN THPT | Chia sẻ Tài liệu, đề thi, hỗ trợ giải toán
Lời giải:
Do $abc=1$ nên tồn tại $x,y,z>0$ sao cho:\((a,b,c)=\left(\frac{x}{y}, \frac{y}{z}, \frac{z}{x}\right)\)
Bài toán trở thành:
Cho $x,y,z>0$. CMR: \(\frac{x^4}{yz(x^2+y^2)}+\frac{y^4}{xz(y^2+z^2)}+\frac{z^4}{xy(z^2+x^2)}\geq \frac{3}{2}\)
Thật vậy, áp dụng BĐT Cauchy-Schwarz:
\(\frac{x^4}{yz(x^2+y^2)}+\frac{y^4}{xz(y^2+z^2)}+\frac{z^4}{xy(z^2+x^2)}=\frac{x^6}{x^2yz(x^2+y^2)}+\frac{y^6}{y^2xz(y^2+z^2)}+\frac{z^6}{z^2xy(z^2+x^2)}\)
\(\geq \frac{(x^3+y^3+z^3)^2}{x^2yz(x^2+y^2)+y^2xz(y^2+z^2)+z^2xy(z^2+x^2)}=\frac{(x^3+y^3+z^3)^2}{xyz(x^3+y^3+z^3+xy^2+yz^2+zx^2)}(*)\)
Áp dụng BĐT AM-GM:
\(x^3+y^3+z^3\geq 3xyz\Rightarrow \frac{x^3+y^3+z^3}{3}\geq xyz(1)\)
Và:
\(x^3+y^3+y^3\geq 3xy^2; y^3+z^3+z^3\geq 3yz^2; z^3+x^3+x^3\geq 3zx^2\)
Cộng theo vế và rút gọn \(\Rightarrow x^3+y^3+z^3\geq xy^2+yz^2+zx^2\)
\(\Rightarrow 2(x^3+y^3+z^3)\geq x^3+y^3+z^3+xy^2+yz^2+zx^2(2)\)
Từ \((1);(2)\Rightarrow \frac{2}{3}(x^3+y^3+z^3)^2\geq xyz(x^3+y^3+z^3+xy^3+yz^2+zx^2)(**)\)
Từ \((*);(**)\Rightarrow \frac{x^4}{yz(x^2+y^2)}+\frac{y^4}{xz(y^2+z^2)}+\frac{z^4}{xy(z^2+x^2)}\geq \frac{(x^3+y^3+z^3)^2}{\frac{2}{3}(x^3+y^3+z^3)^2}=\frac{3}{2}\) (đpcm)
Dấu "=" xảy ra khi $x=y=z$ hay $a=b=c=1$
Từ \(a^2+b^2+c^2=3\Rightarrow a+b+c\le3\)
Ta có: \(\sqrt{\dfrac{9}{\left(a+b\right)^2}+c^2}+\sqrt{\dfrac{9}{\left(b+c\right)^2}+a^2}+\sqrt{\dfrac{9}{\left(c+a\right)^2}+b^2}\)
\(\ge\sqrt{9\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\right)^2+\left(a+b+c\right)^2}\)
\(\ge\sqrt{9\cdot\left(\dfrac{9}{2\left(a+b+c\right)}\right)^2+\left(a+b+c\right)^2}\)
Cần chứng minh \(\sqrt{9\cdot\left(\dfrac{9}{2\left(a+b+c\right)}\right)^2+\left(a+b+c\right)^2}\ge\dfrac{3\sqrt{13}}{2}\)
\(\Leftrightarrow9\left(\dfrac{9}{2t}\right)^2+t^2\ge\dfrac{117}{4}\left(t=a+b+c\le3\right)\)
\(\Leftrightarrow\dfrac{\left(t-3\right)\left(2t-9\right)\left(t+3\right)\left(2t+9\right)}{4t^2}\ge0\)*Đúng*
B1:a)ĐK: \(x\ne 0;4;9\)
b)\(P=\left(\dfrac{\sqrt{x}+3}{\sqrt{x}-2}+\dfrac{\sqrt{x}+2}{3-\sqrt{x}}+\dfrac{\sqrt{x}+2}{x-5\sqrt{x}+6}\right):\left(1-\dfrac{1}{\sqrt{x}+1}\right)\)
\(=\left(\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}+\dfrac{\sqrt{x}+2}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\right):\left(\dfrac{\sqrt{x}-1+1}{\sqrt{x}+1}\right)\)
\(=\dfrac{x-9-x+4+x^{\dfrac{1}{2}}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}:\dfrac{\sqrt{x}}{\sqrt{x}+1}\)
\(=\dfrac{x^{\dfrac{1}{2}}-3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\cdot\dfrac{\sqrt{x}+1}{x^{\dfrac{1}{2}}}\)
\(=\dfrac{1}{\sqrt{x}-2}\cdot\dfrac{\sqrt{x}+1}{x^{\dfrac{1}{2}}}\)\(=\dfrac{\sqrt{x}+1}{x-2\sqrt{x}}\)
c)Vì \(x^{\dfrac{1}{2}}+1>0\forall x\) nên
\(P< 0< =>x-2x^{\dfrac{1}{2}}< 0\)
\(\Leftrightarrow x^{\dfrac{1}{2}}\left(x^{\dfrac{1}{2}}-2\right)< 0\)
\(\Leftrightarrow0< x< 4\)
Vậy 0<x<4 thì P<0
d)tA CÓ: \(\dfrac{1}{P}=\dfrac{x-2x^{\dfrac{1}{2}}}{x^{\dfrac{1}{2}}+1}=\dfrac{x-2x^{\dfrac{1}{2}}+1-1}{x^{\dfrac{1}{2}}+1}=\dfrac{\left(x^{\dfrac{1}{2}}-1\right)^2-1}{x^{\dfrac{1}{2}}+1}\ge-1\)
"=" khi x=1
B2:
a)\(A=x^2-2xy+y^2+4x-4y-5\)
\(=\left(x-y\right)^2+4\left(x-y\right)-5\)
\(=\left(x-y\right)^2-1+4\left(x-y\right)-4\)
\(=\left(x-y+1\right)\left(x-y-1\right)+4\left(x-y-1\right)\)
\(=\left(x-y+5\right)\left(x-y-1\right)\)
b)\(P=x^4+2x^3+3x^2+2x+1\)
\(=\left(x^4+2x^3+x^2\right)+2\left(x^2+x\right)+1\)
\(=\left(x^2+x\right)^2+2\left(x^2+x\right)+1\)
\(=\left(x^2+x+1\right)^2\ge0\forall x\)
Vậy MinP=0
c)\(Q=x^6+2x^5+2x^4+2x^3+2x^2+2x+1\)
\(=\left(x^2+x-1\right)\left(x^4+x^3+2x^2+x+3\right)+4\)
\(=\left(1-1\right)\left(x^4+x^3+2x^2+x+3\right)+4\)
\(=0\left(x^4+x^3+2x^2+x+3\right)+4=4\)
Vậy x^2+x=1 thì Q=4
B3:a)\(2xy+x+y=83\)
\(\Leftrightarrow x\left(2y+1\right)+\dfrac{1}{2}\left(2y+1\right)=\dfrac{167}{2}\)
\(\Leftrightarrow2x\left(2y+1\right)+1\left(2y+1\right)=167\)
\(\Leftrightarrow\left(2x+1\right)\left(2y+1\right)=167\)
Mà \(Ư\left(167\right)=\left\{\pm1;\pm167\right\}\)
\(\Leftrightarrow\left(x;y\right)=\left(-84;-1\right);\left(-1;-84\right);\left(0;83\right);\left(83;0\right)\)
Vậy...
b)\(y^2+2xy-3x-2=0\)
\(\Leftrightarrow x^2+y^2+2xy-x^2-3x-2=0\)
\(\Leftrightarrow\left(x+y\right)^2=x^2+3x+2\)
\(\Leftrightarrow\left(x+y\right)^2=\left(x+1\right)\left(x+2\right)\)
Vì \(x;y\in Z\) nên VT là số chính phương VP là tích 2 số nguyên liên tiếp
\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\x+2=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-2\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}y=1\\y=2\end{matrix}\right.\)
Vậy...
B5:\(B=\dfrac{x^2+x+1}{x^2-x+1}\)
\(\Leftrightarrow x^2\left(B-1\right)+x\left(-B-1\right)+\left(B-1\right)=0\)
\(\Delta=\left(-B-1\right)^2-4\left(B-1\right)\left(B-1\right)\)
\(=-\left(B-3\right)\left(3B-1\right)\)
pt có nghiệm khi \(\Delta\ge0\)
\(\Leftrightarrow\left(B-3\right)\left(3B-1\right)\le0\)
\(\Leftrightarrow\left\{{}\begin{matrix}B-3\le0\\3B-1\ge0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}B\le3\\B\ge\dfrac{1}{3}\end{matrix}\right.\)
Min B=1/3 khi x=-1; Max B=3 khi x=1
Áp dụng bđt Cô-si vào các số dương a,b,c:
\(\dfrac{a^2}{b}+b\ge2\sqrt{\dfrac{a^2}{b}\cdot b}=2\sqrt{a^2}=2a\Rightarrow\dfrac{a^2}{b}\ge2a-b\)
Chứng minh tương tự ta được:
\(\dfrac{b^2}{c}\ge2b-c;\dfrac{c^2}{a}\ge2c-a\)
\(\Rightarrow\dfrac{a^2}{b}+\dfrac{b^2}{c}+\dfrac{c^2}{a}\ge2a+2b+2c-a-b-c=a+b+c\)
Dấu = xảy ra \(\Leftrightarrow a=b=c\)