Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a) + Nếu a/b > 1 thì a/b > b/b => a > b
+ Nếu a > b thì a/b > b/b => a/b > 1 (đpcm)
b) + Nếu a/b < 1 thì a/b < b/b => a < b
+ Nếu a < b thì a/b < b/b => a/b < 1 (đpcm)
Bài 2:
Do \(\frac{a}{b}>\frac{c}{d}\)
\(\Rightarrow\frac{a}{b}.\frac{d}{c}< \frac{c}{d}.\frac{d}{c}\)
=> \(\frac{a.d}{b.c}< 1\Rightarrow a.d< b.c\left(đpcm\right)\)
bai2
vi a/b > c/d
=>ad/bd >cd/bd
và ad/bd , cd/bd có mẫu chung là bd
<=>ad>cd
\(Giải\)
Ta có : \(\frac{a}{b}=\frac{ad}{bd},\frac{c}{d}=\frac{cb}{db}\)
Mà \(\frac{a}{b}< \frac{c}{d}\Rightarrow\frac{ad}{bd}< \frac{cb}{db}\)
\(\Rightarrow\) \(ad< bc\left(1\right)\)
Vì\(ad< bc\Rightarrow\frac{ad}{bd}< \frac{bc}{bd}\)
\(\Rightarrow\frac{a}{b}< \frac{c}{d}\left(2\right)\)
Từ (1) và (2)=> \(\frac{a}{b}< \frac{c}{d}\Leftrightarrow ad< bc\)
Nhớ mk nha
Lời giải:
Áp dụng BĐT Cô-si ta có:
$ab+\frac{a}{b}\geq 2a$
$ab+\frac{b}{a}\geq 2b$
$\frac{a}{b}+\frac{b}{a}\geq 2$
Cộng theo vế 3 BĐT trên ta thu được:
$2(ab+\frac{a}{b}+\frac{b}{a})\geq 2(a+b+1)$
$\Rightarrow ab+\frac{a}{b}+\frac{b}{a}\geq a+b+1$
Ta có đpcm
Dấu "=" xảy ra khi $a=b=1$