Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trước hết , ta khai triển vế trái , sau đó , nhóm các hạng tử .
\(\left(ac+bd\right)^2+\left(ad-bc\right)^2=a^2c^2+b^2d^2+2abcd+a^2d^2+b^2c^2-2abcd\)
\(=\left(a^2c^2+a^2d^2\right)+\left(b^2c^2+b^2d^2\right)\)
\(=a^2\left(c^2+d^2\right)+b^2\left(c^2+d^2\right)\)
\(=\left(a^2+b^2\right)\left(c^2+d^2\right)\)
Vậy \(\left(ac+bd\right)^2+\left(ad-bc\right)^2=\left(a^2+b^2\right)\left(c^2+d^2\right)\left(ĐPCM\right)\)
\(\left(a^2+b^2\right)\left(c^2+d^2\right)=\left(ac+bd\right)^2+\left(ad-bc\right)^2\Leftrightarrow a^2c^2+a^2d^2+b^2c^2+b^2d^2=a^2c^2+b^2d^2+a^2d^2+b^2c^2\Leftrightarrow0=0\)Có điều này đúng nên ta có đpcm đúng
\(\left(a^2+b^2\right)\left(c^2+d^2\right)\)
\(=a^2c^2+a^2d^2+b^2c^2+b^2d^2\)
\(=\left(ac\right)^2+2acbd+\left(bd\right)^2+\left(ad\right)^2-2adbc+bc^2\)
\(=\left(ac+bd\right)^2+\left(ad-bc\right)^2\)
b)
VP=(a+b)[(a-b)2+ab]
=(a+b)(a2-2ab+b2+ab)
=(a+b)(a2-ab+b2)
=a3+b3=VT
Vậy x3+y3=(a+b)[(a-b)2+ab]
c)
VP=(ac+bd)2+(ad-bc)2
=a2c2+2abcd+b2d2+a2d2-2abcd+b2c2
=a2c2+b2d2+a2d2+b2c2
=(a2c2+a2d2)+(b2d2+b2c2)
=a2.(c2+d2)+b2.(c2+d2)
=(a2+b2)(c2+d2)
Vậy (a2+b2)(c2+d2)=(ac+bd)2+(ad-bc)2
\(a,\left(a+b\right)\left(a^2-ab+b^2\right)+\left(a-b\right)\left(a^2+ab+b^2\right)\)\(=\left(a^3+b^3\right)+\left(a^3-b^3\right)=2a^3\Rightarrowđpcm\)
\(b,\left(a+b\right)\left[\left(a-b\right)^2+ab\right]=\left(a+b\right)\left(a^2-2ab+b^2+ab\right)=\left(a+b\right)\left(a^2-ab+b^2\right)\)\(=\left(a^3+b^3\right)\Rightarrowđpcm\)
\(c,\left(a^2+b^2\right)\left(c^2+d^2\right)=a^2c^2+a^2d^2+b^2c^2+b^2d^2=\left(a^2c^2+2abcd+b^2d^2\right)+\left(a^2d^2-2abcd+b^2c^2\right)\)\(=\left(ac+bd\right)^2+\left(ad-bc\right)^2\Rightarrowđpcm\)
a) (a+b)(a2-ab+b2)+(a-b)(a2+ab+b2)
= a3+b3+a3-b3 = 2a3
b) a3+b3
= (a+b)(a2-ab+b2)
= (a+b)(a2- 2ab+b2)+ab
= (a+b)(a2-b2)+ab
Cần cù bù thông minh.
a
\(\left(a^2+b^2\right)\left(c^2+d^2\right)=a^2c^2+a^2d^2+b^2c^2+b^2d^2\)
\(=\left(a^2c^2+2abcd+b^2d^2\right)+\left(a^2d^2-2abcd+b^2c^2\right)\)
\(=\left(ac+bd\right)^2+\left(ad-bc\right)^2\)
b
\(\left(a+b+c\right)^2+a^2+b^2+c^2\)
\(=a^2+b^2+c^2+2\left(ab+bc+ca\right)+a^2+b^2+c^2\)
\(=\left(a^2+2ab+b^2\right)+\left(b^2+2bc+c^2\right)+\left(c^2+2ac+a^2\right)\)
\(=\left(a+b\right)^2+\left(b+c\right)^2+\left(c+a\right)^2\)
a: \(\left(a^2-b^2\right)^2+\left(2ab\right)^2\)
\(=a^4-2a^2b^2+b^4+4a^2b^2\)
\(=a^4+2a^2b^2+b^4=\left(a^2+b^2\right)^2\)
b: \(\left(ac+bd\right)^2+\left(ad-bc\right)^2\)
\(=a^2c^2+b^2d^2+a^2d^2+b^2c^2\)
\(=c^2\left(a^2+b^2\right)+d^2\left(a^2+b^2\right)\)
\(=\left(a^2+b^2\right)\left(c^2+d^2\right)\)
c: \(\left(ax+b\right)^2+\left(a-bx\right)^2+c^2x^2\)
\(=a^2x^2+b^2+a^2+b^2x^2+c^2x^2\)
\(=a^2\left(x^2+1\right)+b^2\left(x^2+1\right)+c^2x^2\)
\(=\left(x^2+1\right)\left(a^2+b^2\right)+c^2x^2\)
1) Áp dụng bunhiacopxki ta được \(\sqrt{\left(2a^2+b^2\right)\left(2a^2+c^2\right)}\ge\sqrt{\left(2a^2+bc\right)^2}=2a^2+bc\), tương tự với các mẫu ta được vế trái \(\le\frac{a^2}{2a^2+bc}+\frac{b^2}{2b^2+ac}+\frac{c^2}{2c^2+ab}\le1< =>\)\(1-\frac{bc}{2a^2+bc}+1-\frac{ac}{2b^2+ac}+1-\frac{ab}{2c^2+ab}\le2< =>\)
\(\frac{bc}{2a^2+bc}+\frac{ac}{2b^2+ac}+\frac{ab}{2c^2+ab}\ge1\)<=> \(\frac{b^2c^2}{2a^2bc+b^2c^2}+\frac{a^2c^2}{2b^2ac+a^2c^2}+\frac{a^2b^2}{2c^2ab+a^2b^2}\ge1\) (1)
áp dụng (x2 +y2 +z2)(m2+n2+p2) \(\ge\left(xm+yn+zp\right)^2\)
(2a2bc +b2c2 + 2b2ac+a2c2 + 2c2ab+a2b2). VT\(\ge\left(bc+ca+ab\right)^2\) <=> (ab+bc+ca)2. VT \(\ge\left(ab+bc+ca\right)^2< =>VT\ge1\) ( vậy (1) đúng)
dấu '=' khi a=b=c
(ac+bd)^2=\(^{a^2c^2+2abcd+b^2d^2}\)
\(\left(ad-bc\right)^2=a^2d^2-2abcd+b^2c^2\)
\(\Rightarrow\left(ac+bd\right)^2-\left(ad-bc\right)^2=a^2c^2+a^2d^2+b^2c^2+b^2d^2\) =vp(dpcm)
????????????????