Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: b2=ac\(\Rightarrow\frac{b}{c}=\frac{a}{b}\)
\(\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{2016.b}{2016.c}\)(1)
áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{a}{b}=\frac{2016.b}{2016.c}=\frac{a+2016.b}{b+2016.c}\)(2)
Từ (1) và (2) ta có: \(\frac{a}{b}=\frac{b}{c}=\frac{a+2016.b}{b+2016.c}\)
\(\Rightarrow\frac{\left(a+2016.b\right)^2}{\left(b+2016.c\right)^2}=\frac{a^2}{b^2}=\frac{a}{b}.\frac{a}{b}=\frac{a}{b}.\frac{b}{c}\)(vì \(\frac{a}{b}=\frac{b}{c}\))\(=\frac{a}{c}\)(điều phải chứng minh)
\(ac=bb=>\frac{a}{b}=\frac{b}{c}=\frac{2012b}{2012c}\)
áp dụng t/c dãy tỉ số bằng nhau, ta có:
\(\frac{a}{b}=\frac{b}{c}=\frac{2012b}{2012c}=\frac{a+2012b}{b+2012c}\)
\(=>\left(\frac{a}{b}\right)^2=\frac{\left(a+2012b\right)^2}{\left(b+2012c\right)^2}\)
vì \(\frac{a}{b}=\frac{b}{c}=>\left(\frac{a}{b}\right)^2=\frac{a.b}{b.c}=\frac{a}{c}\)
\(=>\frac{a}{c}=\frac{\left(a+2012b\right)^2}{\left(b+2012c\right)^2}\left(dpcm\right)\)
Bài 1:
Ta có: \(\frac{\left(a+2012b\right)^2}{\left(b+2012c\right)^2}=\frac{a^2+2.2012.ab+2012^2.b^2}{b^2+2.2012.bc+2012^2.c^2}=\frac{a^2+2.2012.ab+2012^2.ac}{ac+2.2012.bc+2012^2.c^2}=\frac{a\left(a+2.2012.b+2012^2.c\right)}{c\left(a+2.2012.b+2012^2.c\right)}=\frac{a}{c}\)
Vậy...
Bài 2:
\(\frac{x}{a+2b+c}=\frac{y}{2a+b-c}=\frac{z}{4a-4b+c}\Rightarrow\frac{a+2b+c}{x}=\frac{2a+b-c}{y}=\frac{4a-4b+c}{z}\)
\(\Rightarrow\frac{a+2b+c}{x}=\frac{2\left(2a+b-c\right)}{2y}=\frac{4a-4b+c}{z}=\frac{a+2b+c+4a+2b-2c+4a-4b+c}{x+2y+z}=\frac{a}{x+2y+z}\)(1)
\(\frac{2\left(a+2b+c\right)}{2x}=\frac{2a+b-c}{y}=\frac{4a-4b+c}{z}=\frac{2a+4b+2c+2a+b-c-4a+4b-c}{2x+y-z}=\frac{b}{2x+y-z}\) (2)
\(\frac{4\left(a+2b+c\right)}{4x}=\frac{4\left(2a+b-c\right)}{4y}=\frac{4a-4b+c}{z}=\frac{4a+8b+c-8a-4b+c+4a-4b+c}{4x-4y+z}=\frac{c}{4x-4y+z}\) (3)
Từ (1),(2),(3) suy ra \(\frac{a}{x+2y+z}=\frac{b}{2x+y-z}=\frac{c}{4x-4y+z}\)
bạn trên nhầm -4b thành +4b ở bài 2 ở phần (1) nha bạn, nhưng mình cũng cảm ơn
Câu hỏi của Lê Thị Trà MI - Toán lớp 7 - Học toán với OnlineMath Bạn xem bài làm tương tự ở link này nhé!
\(b^2=a.c\)\(=>\frac{a}{b}=\frac{b}{c}\)
Đặt : \(\frac{a}{b}=\frac{b}{c}=k\)
Ta có : \(a=b.k\)
\(b=c.k\)
\(=>\)\(\frac{a}{c}=\frac{b.k}{c}=\frac{c.k+k}{c}=k^2\left(1\right)\)
\(\left(\frac{a+2012b}{b+2012c}\right)^2=\left(\frac{bk+2012b}{ck+2012c}\right)^2=\left(\frac{b\left(k+2012\right)}{c\left(k+2012\right)}\right)^2=\left(\frac{b}{c}\right)^2=k^2\left(2\right)\)
Từ (1) và (2) \(=>\frac{a}{c}=\left(\frac{a+2012b}{b+2012c}\right)^2\left(đpcm\right)\)
Hok tốt~
em gửi bài qua fb thầy dh giải giúp cho, tìm fb của thầy qua sđt: 0975705122. Thầy Thành
baifnayf giải sao? mình đang tìm mà thấy thầy trả lời thế này thì chịu. ai giải giúp với
Cho a,b,c,d khác 0 thoả b2= ac CMR
\(\frac{a}{c}\) =\(\frac{\left(a+2012b\right)^2}{\left(b+2012c\right)^2}\)