K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 3 2019

Đặt \(\left\{{}\begin{matrix}a+b-c=x\\b+c-a=y\\c+a-b=z\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=\frac{x+z}{2}\\b=\frac{x+y}{2}\\c=\frac{y+z}{2}\end{matrix}\right.\)

Đặt \(A=\frac{a}{b+c-a}+\frac{b}{a+c-b}+\frac{c}{a+b-c}\)

\(A=\frac{\frac{x+z}{2}}{y}+\frac{\frac{x+y}{2}}{z}+\frac{\frac{y+z}{2}}{x}\)

\(A=\frac{x+z}{2y}+\frac{x+y}{2z}+\frac{y+z}{2x}\)

\(A=\frac{x}{2y}+\frac{z}{2y}+\frac{x}{2z}+\frac{y}{2z}+\frac{y}{2x}+\frac{z}{2x}\)

Áp dụng BĐT AM-GM ta có:

\(A\ge6\sqrt[6]{\frac{x}{2y}.\frac{z}{2y}.\frac{x}{2z}.\frac{y}{2z}.\frac{z}{2x}.\frac{y}{2x}}=6.\frac{1}{2}=3\)

Dấu " = " xảy ra <=> x=y=z <=> a=b=c

24 tháng 3 2019

Áp dụng BĐT AM-GM ta có $\sum \frac{a}{b+c-a} \ge 3 \sqrt[3]{ \frac{abc}{(a+b-c)(b+c-a)(c+a-b)}} \ge 3$.

Dấu đẳng thức xảy ra khi và chỉ khi $a=b=c$.

29 tháng 2 2020

Ta xét hiệu :

\(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ac+a^2}-\left(\frac{b^3}{a^2+ab+b^2}+\frac{c^3}{b^2+bc+c^2}+\frac{a^3}{c^2+ac+a^2}\right)\)

\(=a-b+b-c+c-a=0\)

Do đó : \(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ac+a^2}=\frac{b^3}{a^2+ab+b^2}+\frac{c^3}{b^2+bc+c^2}+\frac{a^3}{c^2+ac+a^2}=1006\)

Khi đó \(M=2\cdot1006=2012\)

29 tháng 2 2020

Chỉ ra được : \(M=2\cdot1006=2012\)

Gợi ý : Xét hiệu .

26 tháng 1 2020

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)

\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}=\frac{1}{a+b+c}-\frac{1}{c}\)

\(\Leftrightarrow\frac{a+b}{ab}=\frac{c-a-b-c}{c\left(a+b+c\right)}\)

\(\Leftrightarrow\frac{a+b}{ab}=\frac{-\left(a+b\right)}{c\left(a+b+c\right)}\)

\(\Leftrightarrow\left(a+b\right)\left(ca+bc+c^2\right)+ab\left(a+b\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left(ca+bc+c^2+ab\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a+b=0\\b+c=0\\c+a=0\end{matrix}\right.\)

Với \(a+b=0\Leftrightarrow a^3+b^3=0\Leftrightarrow A=0\)

Với \(b+c=0\Leftrightarrow b^3+c^3=0\Leftrightarrow A=0\)

Với \(c+a=0\Leftrightarrow c^3+a^3=0\Leftrightarrow A=0\)

Vậy....

10 tháng 10 2018

ý a bạn có chắc viết đề bài đúng không

10 tháng 10 2018

đề bài đúng mà

8 tháng 8 2018

\(a^3+b^3+c^3=3abc\)

<=>  \(a^3+b^3+c^3-3abc=0\)

<=>  \(\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)

<=>  \(\orbr{\begin{cases}a+b+c=0\\a^2+b^2+c^2-ab-bc-ca=0\end{cases}}\)

<=>  \(\orbr{\begin{cases}a+b+c=0\\a=b=c\end{cases}}\)

đến đây ez tự làm nốt nhé, ko ra ib mk

19 tháng 7 2019

Akai Haruma em có cách khác cô nè:)

\(\frac{a^3-b^3}{a^3+c^3}=\frac{\left(a-b\right)\left(a^2+ab+b^2\right)}{\left(a+c\right)\left(a^2-ac+c^2\right)}\) (1)

Cần chứng minh \(a^2+ab+b^2=a^2-ac+c^2\Leftrightarrow ab+b^2=c^2-ac\)

\(\Leftrightarrow b\left(a+b\right)=c\left(c-a\right)\Leftrightarrow b\left(a+b\right)=\left(a+b\right)\left(a+b-a\right)\)

\(\Leftrightarrow b\left(a+b\right)=b\left(a+b\right)\) (đúng)

Do vậy \(\frac{a^3-b^3}{a^3+c^3}=\frac{\left(a-b\right)\left(a^2+ab+b^2\right)}{\left(a+c\right)\left(a^2-ac+c^2\right)}=\frac{a-b}{a+c}^{\left(đpcm\right)}\)

AH
Akai Haruma
Giáo viên
19 tháng 7 2019

Lời giải:

Ta có:
\(a^3-b^3=(a-b)(a^2+ab+b^2)\)

\(a^3+c^3=(a+c)(a^2-ac+c^2)=(a+c)[a^2-a(a+b)+(a+b)^2]\) (thay $c=a+b$)

\(=(a+c)(a^2-a^2-ab+a^2+2ab+b^2)=(a+c)(a^2+ab+b^2)\)

Do đó:

\(\frac{a^3-b^3}{a^3+c^3}=\frac{(a-b)(a^2+ab+b^2)}{(a+c)(a^2+ab+b^2)}=\frac{a-b}{a+c}\)

Ta có đpcm.