K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 2 2017

Để mk giải cho

15 tháng 2 2017

\(\frac{3}{\left(a-2\right)\left(a-3\right)}\). minh khong chac dau nha. neu sai thi thoi.

a) \(A=\frac{1}{a^2+a}+\frac{1}{a^2+3a+2}+\frac{1}{a^2+5a+6}+\frac{1}{a^2+7a+12}+\frac{1}{a^2+9a+20}\)

\(A=\frac{1}{a\left(a+1\right)}+\frac{1}{\left(a+1\right)\left(a+2\right)}+\frac{1}{\left(a+2\right)\left(a+3\right)}+\frac{1}{\left(a+3\right)\left(a+4\right)}+\frac{1}{\left(a+4\right)\left(a+5\right)}\)

\(A=\frac{1}{a}-\frac{1}{a+1}+\frac{1}{a+1}-\frac{1}{a+2}+\frac{1}{a+2}-\frac{1}{a+3}+\frac{1}{a+3}-\frac{1}{a+4}+\frac{1}{a+4}-\frac{1}{a+5}\)

\(A=\frac{1}{a}-\frac{1}{a+5}=\frac{a+5-a}{a\left(a+5\right)}=\frac{5}{a^2+5a}\)

b) Điều kiện: \(a\ne0;-1;-2;-3;-4;-5\)

\(A>\frac{5}{6}\) \(\Leftrightarrow\frac{5}{a^2+5a}>\frac{5}{6}\) \(\Leftrightarrow\frac{5}{a^2+5a}-\frac{5}{6}>0\) \(\Leftrightarrow\frac{30-5a^2-25a}{30\left(a^2+5a\right)}>0\)

\(\Leftrightarrow\left[{}\begin{matrix}-6< a< -5\\0< a< 1\end{matrix}\right.\)

Kết luận: ....

NV
1 tháng 7 2020

ĐKXĐ: ...

a/ \(A=\frac{1}{a\left(a+1\right)}+\frac{1}{\left(a+1\right)\left(a+2\right)}+\frac{1}{\left(a+2\right)\left(a+3\right)}+\frac{1}{\left(a+3\right)\left(a+4\right)}+\frac{1}{\left(a+4\right)\left(a+5\right)}\)

\(=\frac{1}{a}-\frac{1}{a+1}+\frac{1}{a+1}-\frac{1}{a+2}+...+\frac{1}{a+4}-\frac{1}{a+5}\)

\(=\frac{1}{a}-\frac{1}{a+5}=\frac{5}{a\left(a+5\right)}\)

\(A>\frac{5}{6}\Rightarrow\frac{5}{a\left(a+5\right)}>\frac{5}{6}\)

\(\Leftrightarrow\frac{1}{a\left(a+5\right)}-\frac{1}{6}>0\Leftrightarrow\frac{6-a^2-5a}{a\left(a+5\right)}>0\)

\(\Leftrightarrow\frac{\left(1-a\right)\left(a+6\right)}{a\left(a+5\right)}>0\Rightarrow\left[{}\begin{matrix}-6< a< -5\\0< a< 1\end{matrix}\right.\)

24 tháng 6 2019

\(P=\frac{1}{a^2-a}+\frac{1}{a^2-3a+2}+\frac{1}{a^2-5a+6}+\frac{1}{a^2-7a+12}+\frac{1}{a^2-9a+20}\)

\(=\frac{1}{a.\left(a-1\right)}+\frac{1}{\left(a-1\right).\left(a-2\right)}+\frac{1}{\left(a-2\right).\left(a-3\right)}+\frac{1}{\left(a-3\right).\left(a-4\right)}+\frac{1}{\left(a-4\right).\left(a-5\right)}\)

a) ĐKXĐ: \(a\ne0;1;2;3;4;5;6\)

b) \(P=\frac{1}{a-1}-\frac{1}{a}+\frac{1}{a-2}-\frac{1}{a-1}+\frac{1}{a-3}-\frac{1}{a-2}+\frac{1}{a-4}-\frac{1}{a-3}+\frac{1}{a-5}-\frac{1}{a-4}\)

\(A=\frac{1}{a-5}-\frac{1}{a}=\frac{a-\left(a-5\right)}{a.\left(a-5\right)}=\frac{5}{a.\left(a-5\right)}\)

c) \(a^3-a^2+2=0\)

\(\Leftrightarrow a^3+a^2-2a^2-2a+2a+2=0\)

\(\Leftrightarrow a^2.\left(a+1\right)-2a.\left(a+1\right)+2.\left(a+1\right)=0\)

\(\Leftrightarrow\left(a+1\right).\left(a^2-2a+2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}a+1=0\\a^2-2a+2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}a=-1\\\left(a-1\right)^2=-1\left(loai\right)\end{cases}}}\)

Thay a=-1 vào P

\(P=\frac{5}{a.\left(a-5\right)}=\frac{5}{-1.\left(-1-5\right)}=\frac{5}{6}\)

1 tháng 3 2017

\(A=\dfrac{1}{\left(a-2\right)\left(a-3\right)}+\dfrac{1}{\left(a-3\right)\left(a-4\right)}+\dfrac{1}{\left(a-4\right)\left(a-5\right)}\)\(A=\dfrac{1}{a-2}-\dfrac{1}{a-3}+\dfrac{1}{a-3}+\dfrac{1}{a-4}-\dfrac{1}{a-4}+\dfrac{1}{a-4}-\dfrac{1}{a-5}\)\(A=\dfrac{1}{a-2}-\dfrac{1}{a-5}=\dfrac{-3}{\left(a-2\right)\left(a-5\right)}\)

1 tháng 3 2017

\(\dfrac{1}{a^2-5a+6}+\dfrac{1}{a^2-7a+12}+\dfrac{1}{a^2-9a+20}\)

\(\Leftrightarrow\dfrac{1}{\left(a-2\right)\left(a-3\right)}+\dfrac{1}{\left(a-3\right)\left(a-4\right)}+\dfrac{1}{\left(a-4\right)\left(a-5\right)}\)

\(\Leftrightarrow\dfrac{\left(a-4\right)\left(a-5\right)}{\left(a-2\right)\left(a-3\right)\left(a-4\right)\left(a-5\right)}+\dfrac{\left(a-2\right)\left(a-5\right)}{\left(a-2\right)\left(a-3\right)\left(a-4\right)\left(a-5\right)}+\dfrac{\left(a-2\right)\left(a-3\right)}{\left(a-2\right)\left(a-3\right)\left(a-4\right)\left(a-5\right)}\)

\(\Leftrightarrow\dfrac{\left(a-4\right)\left(a-5\right)+\left(a-2\right)\left(a-5\right)+\left(a-2\right)\left(a-3\right)}{\left(a-2\right)\left(a-3\right)\left(a-4\right)\left(a-5\right)}\)

\(\Leftrightarrow\dfrac{\left(a-4\right)\left(a-5\right)+\left(a-2\right)\left[\left(a-3\right)+\left(a-5\right)\right]}{\left(a-2\right)\left(a-3\right)\left(a-4\right)\left(a-5\right)}\)

\(\Leftrightarrow\dfrac{\left(a-4\right)\left(a-5\right)+\left(a-2\right)\left(a-4\right)2}{\left(a-2\right)\left(a-3\right)\left(a-4\right)\left(a-5\right)}\)

\(\Leftrightarrow\dfrac{\left(a-4\right)\left[\left(a-5\right)+2\left(a-2\right)\right]}{\left(a-2\right)\left(a-3\right)\left(a-4\right)\left(a-5\right)}\)

\(\Leftrightarrow\dfrac{3a-9}{\left(x-2\right)\left(x-3\right)\left(x-5\right)}\)

\(\Leftrightarrow\dfrac{3\left(a-3\right)}{\left(a-2\right)\left(a-3\right)\left(a-5\right)}\)

\(\Leftrightarrow\dfrac{3}{\left(a-2\right)\left(a-5\right)}\)

19 tháng 3 2018

\(M=\frac{1}{a^2-5a+6}+\frac{1}{a^2-7a+12}+\frac{1}{a^2-9a+20}+\frac{1}{a^2-11a+30}\) 

\(M=\frac{1}{\left(a-2\right)\left(a-3\right)}+\frac{1}{\left(a-3\right)\left(a-4\right)}+\frac{1}{\left(a-4\right)\left(a-5\right)}+\frac{1}{\left(a-5\right)\left(a-6\right)}\)

\(M=\frac{1}{a-2}-\frac{1}{a-3}+\frac{1}{a-3}-\frac{1}{a-4}+\frac{1}{a-4}-\frac{1}{a-5}+\frac{1}{a-5}-\frac{1}{a-6}\)

\(M=\frac{1}{a-2}-\frac{1}{a-6}\)

25 tháng 1 2017

Bài 1:

\(B=\frac{0,375-0,3+\frac{3}{11}+\frac{3}{12}}{-0,625+0,5-\frac{5}{11}-\frac{5}{12}}+\frac{1,5+1-0,75}{2,5+\frac{5}{3}-1,25}\)

\(=\frac{3\left(0,125-0,1+\frac{1}{11}+\frac{1}{12}\right)}{-\left(0,625-0,5+\frac{5}{11}+\frac{5}{12}\right)}+\frac{3\left(0,5+\frac{1}{3}-0,25\right)}{5\left(0,5+\frac{1}{3}-0,25\right)}\)

\(=\frac{3\left(0,125-0,1+\frac{1}{11}+\frac{1}{12}\right)}{-\left[5\left(0,125-0,1+\frac{1}{11}+\frac{1}{12}\right)\right]}+\frac{3}{5}\)

\(=\frac{-3}{5}+\frac{3}{5}\)

\(=0\)

Bài 2:

b) Giải:

Ta có: \(\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a^6}{b^6}=\frac{c^6}{d^6}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{a^6}{b^6}=\frac{c^6}{d^6}=\frac{3a^6}{3b^6}=\frac{c^6}{d^6}=\frac{3a^6+c^6}{3b^6+d^6}\) (1)

\(\frac{a}{b}=\frac{c}{d}=\frac{a+b}{b+d}\)

\(\Rightarrow\left(\frac{a}{b}\right)^6=\left(\frac{a+c}{b+d}\right)^6=\frac{a^6}{b^6}=\frac{\left(a+c\right)^6}{\left(b+d\right)^6}\) (2)

Từ (1) và (2) \(\Rightarrow\frac{3a^6+c^6}{3b^6+d^6}=\frac{\left(a+c\right)^6}{\left(b+d\right)^6}\left(đpcm\right)\)

25 tháng 1 2017

bài 2 chỗ cho

a12=b+34=c56a−12=b+34=c−56và 5a - 3b - 4c = 46.Tìm a,b,c?

là phần a các bn nhé