\(\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\r...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 7 2015

\(M=\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}\)

Do a+b+c=0=>b+c=-a ; a+c=-b ; a+b=-c

=>M=\(\frac{\left(-a\right)\left(-b\right)\left(-c\right)}{abc}=-1\)

17 tháng 7 2015

a+b +c = 0 => a + b = -c ; a+ c = -b ; b+ c = - a thay vào ta có :

  \(M=\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=\frac{a+b}{b}\cdot\frac{b+c}{c}\cdot\frac{a+c}{a}=-\frac{c}{b}\cdot-\frac{a}{c}\cdot-\frac{b}{a}=-\frac{abc}{abc}=-1\)

Nhơ đúng nha

Ta có:

a+b-c/c = b+c-a/a = c+a-b/b

=>a+b-c/c + 2 = b+c-a/a +2 = c+a-b/b +2

=>a+b-c/c  + 2c/c =b+c-a/a +2a/a = c+a-b/b +2/b

=>a+b+c/c = a+b+c/a =a+b+c/b

* Nếu a+b+c=0 thì a= 0-b-c= -(b+c)

                           b= 0-a-c= -(a+c)

                           c= 0-b-a= -(b+a)

Thay a= -(b+c) ; b=-(a+c);c=-(b+a) vào B ta được

B=(1+b/a)(1+a/c)(1+c/b)=(a/a + b/a )(c/c +a/c)(b/b+c/b)=(a+b)/a * (a+c)/c * (c+b)/b

                                                                                =(-c)/a * (-b)/c * (-a)/b =-1

* Nếu  a+b+c\(\ne\)0 thì a=b=c

Khi đó

B=(1+b/a)(1+a/c)(1+c/b)=(1+1)(1+1)(1+1)=2*2*2=8

Vậy B=-1 hoặc B=8

nhớ k nha bạn

1 tháng 3 2018

B=1 hoặc B=8 nha!

18 tháng 8 2016

Ta có : \(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}\Leftrightarrow\frac{a+b-c}{c}+2=\frac{b+c-a}{a}+2=\frac{c+a-b}{b}+2\)

\(\Leftrightarrow\frac{a+b+c}{c}=\frac{a+b+c}{a}=\frac{a+b+c}{b}\)

TH1. Nếu a + b + c = 0 thì : \(M=\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=\frac{\left(-a\right).\left(-b\right).\left(-c\right)}{abc}=-1\)

TH2. Nếu \(a+b+c\ne0\) thì a = b = c

\(\Rightarrow M=\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=\frac{2a.2a.2a}{a^3}=8\)

23 tháng 3 2018

mình làm được nhưng đánh lâu lắm

NV
6 tháng 5 2019

\(\frac{b+c-a}{a}=\frac{a+c-b}{b}=\frac{a+b-c}{c}=\frac{a+b+c}{a+b+c}=1\)

\(\Rightarrow\left\{{}\begin{matrix}\frac{b+c-a}{a}=1\\\frac{a+c-b}{b}=1\\\frac{a+b-c}{c}=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}b+c=2a\\a+c=2b\\a+b=2c\end{matrix}\right.\)

\(\Rightarrow Q=\frac{\left(a+b\right)}{b}.\frac{\left(b+c\right)}{c}.\frac{\left(a+c\right)}{c}=\frac{2c.2a.2b}{abc}=8\)

Bài 1: D

Bài 2:

Ta có: \(\frac{a}{b}=\frac{c}{d}\)

\(\Rightarrow\frac{a}{b}\pm1=\frac{c}{d}\pm1\)

\(\Rightarrow\frac{a\pm b}{b}=\frac{c\pm d}{d}\)(đpcm)

24 tháng 6 2020

bạn tự làm đi tính toán thôi mà

23 tháng 11 2019

Câu hỏi của ✨♔♕ Saiko ♕♔✨ - Toán lớp 6 - Học toán với OnlineMath

24 tháng 10 2017

mk ko bt 123

24 tháng 10 2017

\(\left(a+b\right)^2\ge4ab\Rightarrow\frac{a^2+b^2}{ab\left(a+b\right)}\ge\frac{4ab}{ab\left(a+b\right)}\)bài1

a) ta có \(\left(a-b\right)^2\ge0\) với mọi a,b\(\in\)N*

=> \(a^2-2ab+b^2\ge0\Rightarrow a^2+b^2\ge2ab\Rightarrow\frac{a^2}{ab}+\frac{b^2}{ab}\ge2\Rightarrow\frac{a}{b}+\frac{b}{a}\ge2\)

b) tương tự ta có \(a^2+b^2\ge2ab\)

\(\left(a+b\right)^2\ge4ab\Rightarrow\frac{\left(a+b\right)^2}{ab\left(a+b\right)}\ge\frac{4ab}{ab\left(a+b\right)}\)(do a,b\(\in\)N*)

\(\Rightarrow\frac{a+b}{ab}\ge\frac{4}{a+b}\Rightarrow\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)\ge4\)

bài 2 chịu