Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B C A H D I
a) AB// HD (cùng vuông góc với AC)
b) AB// HD suy ra ABC= DHC= 60 độ nên AHD= 30 độ ( vì kề bù với góc DHC= 60 độ và góc BAH= 90 độ)
c) bạn ghi sai đề phải là cắt tia phân giác góc BCA tại I
Ta có: BAC= 30 độ (trong tam giác HDC có DHC= 60 độ; HDC= 90 độ)
suy ra 1/2 BAC= 15 độ hay ACI= 15 độ
Cm tương tự với tam giác ABH ta đc BAH= 30 độ suy ra HAI= 15 độ
Cm tương tự vói tam giác HAD ta đc HAD= 60 độ
Xét tam giác IAC có IAC+ (IAH+HAC) + AIC= 180 độ
hay 15 độ+ 75 độ + AIC=180 độ
suy ra AIC= 90 độ hay AI vuông góc Ci
Cho tam giác ABC vuông tại A, có AB < AC. Kẻ AH vuông góc với BC (H thuộc BC).
a) Chứng minh: HB < AH < HC.
b) Tia phân giác góc BAH cắt BC tại D. Qua C kẻ đường thẳng vuông góc với AD và cắt AD tại I.
Chứng minh: CI là tia phân giác của góc ACB.
c) Tia phân giác góc ADC cắt CI tại K, từ K vẽ KE vuông góc với BC (K thuộc BC).
Chứng minh: ID + IC > KE+ DC.
Câu hỏi tương tự Đọc thêma) Xét tam giác ABD và tam giác HBD có :
góc ABD = góc HBD (BD là tia pg)
góc BAD = góc BHD=90 độ (gt)
BD là cạnh chung
=> Tam giác ABD = Tam giác HBD (CH-GN)
=> AD = DH ( 2 cạnh tương ứng )
b) Xét tam giác DHC có :
Góc DHC = 90 độ => DC là cạnh huyền => DC > DH
Ta lại có : AD=DH ( cm ở câu a )
=> DC>AD
a)Xét ∆ vuông ABH và ∆ADH có :
AH chung
BH = HD
=> ∆ABH =∆ADH (2 cạnh góc vuông)
b) Xét ∆ABD ta có :
AH \(\perp\)BC
BH = HD
=> AH là trung trực
=> ∆ABD cân tại A
=> AB = AD
ABD = ADB
AH là phân giác BAD
=> BAH = DAH
Mà ADB = EDC ( đối đỉnh)
Xét ∆ ABH có :
ABH + BHA + BAH = 180°
=> BAH = 90° - ABH (1)
Xét ∆ DEC có :
DEC + ECD + CDE = 180°
=> EDC = 90° - EDC (2)
Mà EDC = BDA (cmt)
=> EDC = BDA = ABD (3)
Từ (1) (2) (3) => BAH = ECD (dpcm)
c) Xét ∆ABC có
BAC + ACB + ABC = 180°
=> ACB = 90° - ABC
Mà ECD = ABC (cmt)
=> ECD = BCA
Hay CB là phân giác ECA
A B C H D K 1 2 1 2 3
a) \(\widehat{BAH}=\widehat{C}\) (vì cùng phụ với \(\widehat{B}\)) (1)
\(\widehat{CAH}=\widehat{B}\) (vì cùng phụ với \(\widehat{C}\)) (2)
Xét tam giác DAB có: \(\widehat{ADC}=\widehat{DAB}+\widehat{B}\) (vì góc ngoài bằng tổng hai góc trong không kề với nó)
Ta lại có: \(\widehat{DAC}=\widehat{DAH}+\widehat{HAC}\)
Mà \(\widehat{DAB}=\widehat{DAH}\) (tính chất tia phân giác)
\(\widehat{B}=\widehat{HAC}\) (theo (2))
=> \(\widehat{ADC}=\widehat{DAC}\)
b) Theo câu a ta có: \(\widehat{C}=\widehat{HAB}\)
=> \(\widehat{C_1}=\widehat{C_2}=\widehat{A_1}=\widehat{A_2}\)
Xét tam giác ACK có tổng 2 góc A và C là:
\(\widehat{ACK}+\widehat{CAK}=\widehat{C_2}+\widehat{CAK}=\widehat{A_1}+\widehat{CAK}=\widehat{CAB}=90^o\)
=> Góc còn lại bằng 90 độ, tức là \(\widehat{AKC}=180^o-\left(\widehat{ACK}+\widehat{CAK}\right)=180^o-90^o=90^o\)
=> CK vuông góc với AD
Xét tg AHB và tg AHC,ta có:
AH chung
gBAH=gCAH(tia phân giác của góc A cắt BC tại H)
AB=AC(gt)
=>tg AHB =tg AHC(c-g-c)
Xét tg ABC,có:AB=AC (gt)
=>tg ABC cân tại A
mà AH là tia phân giác
=>AH là đường cao
=>AH vuông góc vs BC
Ta có:g BAH+g ABH=g AHB=90*
và gDHB+gDBH=gBDH=90*
=>góc HAB = góc BHD
gợi ý phần c
gọi F là giao điểm của AH và DE
Xét tg ADH và tg AEH,có
AH chung
ADH=AEH=90
DAH=EAH
=>tg ADH =tg AEH(ch-gn)
=>AD=AE
=>tg ADE cân tại A
mà AF là tia phân giác
=>AF vuông góc vs DE
ta có BHF=EFH=90
=>DE//BC
p/s:gợi ý thôi nên trình bày cẩn thận hơn nhé.
a: AB\(\perp\)AC
HD\(\perp\)AC
Do đó:AB//HD