K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 11 2018

Ta có: \(a^3+b^3+c^3=\left(a^3-a\right)+\left(b^3-b\right)+\left(c^3-c\right)+\left(a+b+c\right)\)

\(=a\left(a^2-1\right)+b\left(b^2-a\right)+c\left(c^2-1\right)+\left(a+b+c\right)\)

\(=a\left(a-1\right)\left(a+1\right)+b\left(b+1\right)\left(b-1\right)+c\left(c-1\right)\left(c+1\right)+\left(a+b+c\right)\)

\(a\left(a-1\right)\left(a+1\right)⋮6\)

\(b\left(b-1\right)\left(b+1\right)⋮6\)

\(c\left(c-1\right)\left(c+1\right)⋮6\)

\(a+b+c⋮6\)

\(\Rightarrow a^3+b^3+c^3⋮6\)

\(\Rightarrowđccm\)

18 tháng 9 2019

1) a. Câu hỏi của Hàn Vũ Nhi - Toán lớp 8 - Học toán với OnlineMath

4 tháng 7 2018

nếu giả thiết cho \(a=b=c=1\)  thì ta thay vào đẳng thức trên

\(1+1+1+3=2.\left(1+1+1\right)=6\) 

điều này luôn đúng với thuận và đảo 

4 tháng 7 2018

đây là baaif đội tuyển phải giải chi tiết chứ không phải thế

22 tháng 10 2018

Ta có : \(a^3-a=a\left(a^2-1\right)=a\left(a-1\right)\left(a+1\right)\)

Đây là tích của 3 số nguyên liên tiếp nên trong 3 số nguyên liên tiếp tồn tại 1 bội số của 2 và 3

\(\Rightarrow a\left(a-1\right)\left(a+1\right)⋮2;3\)

\(\left(2,3\right)=1\Rightarrow a\left(a-1\right)\left(a+1\right)⋮6\)

\(\Rightarrow a^3-a⋮6\left(1\right)\)

CMTT , ta có : \(b^3-b⋮6;c^3-c⋮6\left(2\right)\)

Từ ( 1 ) ; ( 2 )

\(\Rightarrow a^3-a+b^3-b+c^3-c⋮6\)

\(\Rightarrow\left(a^3+b^3+c^3\right)-\left(a+b+c\right)⋮6\)

\(a+b+c⋮6\)

\(\Rightarrow a^3+b^3+c^3⋮6\left(đpcm\right)\)

17 tháng 3 2017

Ta có: a13-a1=a1(a12-1)=(a1-1)a1(a1+1), là tích của 3 số nguyên liên tiếp nên a13-a1 chia hết cho 2 và 3. Mà (2;3)=1

=> a13-a1 chia hết cho 6

Chứng minh tương tự:

a23-a2 chia hết cho 6

...

a20133 - a2013 chia hết cho 6.

=>(a13-a1) + (a23-a2)+...+(a20132 - a2013) chia hết cho 6

Hay S-P chia hết cho 6.

Do đó: Nếu một trong 2 biểu thức S, P chia hết cho 6 ta suy ra biểu thức còn lại cũng chia hết cho 6.

Vậy S chia hết cho 6 khi và chỉ khi P chia hết cho 6.

18 tháng 3 2017

thanks