K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 6 2017

Ta có: 

\(\left(a-b\right)^2\left(b-c\right)^2+\left(b-c\right)^2\left(c-a\right)^2+\left(c-a\right)^2\left(a-b\right)^2\)

\(=\left(a^2+b^2+c^2-ab-bc-ca\right)^2\)

\(\Rightarrow A=\sqrt{\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}}\)

\(=\sqrt{\frac{\left(a-b\right)^2\left(b-c\right)^2+\left(b-c\right)^2\left(c-a\right)^2+\left(c-a\right)^2\left(a-b\right)^2}{\left(a-b\right)^2\left(b-c\right)^2\left(c-a\right)^2}}\)

\(=\sqrt{\frac{\left(a^2+b^2+c^2-ab-bc-ca\right)^2}{\left(a-b\right)^2\left(b-c\right)^2\left(c-a\right)^2}}\)

\(=\frac{\left(a^2+b^2+c^2-ab-bc-ca\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)

Vì \(a,b,c\in Q\)

\(\Rightarrow A\in Q\)

21 tháng 6 2017

Đặt \(a-b=x,b-c=y,c-a=z\)\(\Rightarrow x+y+z=a-b+b-c+c-a=0\)

Xét \(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+2\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)\)

\(=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{2\left(x+y+z\right)}{xyz}=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}=A\)

Khi đó A bằng giá trị tuyệt đối của \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\) là số hữu tỉ

NV
10 tháng 10 2019

Đặt \(\left\{{}\begin{matrix}a-b=x\\b-c=y\\c-a=z\end{matrix}\right.\) \(\Rightarrow x+y+z=0\)

\(\sqrt{\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}}=\sqrt{\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+2.0}=\sqrt{\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{2\left(x+y+z\right)}{xyz}}\)

\(=\sqrt{\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{2}{xy}+\frac{2}{yz}+\frac{2}{zx}}=\sqrt{\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2}\)

\(=\left|\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right|\in Q\)

16 tháng 7 2016

Bạn tham khảo ở đây : http://olm.vn/hoi-dap/question/633314.html

27 tháng 5 2017

Cần chứng minh BĐT khác 

\(\frac{a^3-b^3}{\left(a-b\right)^3}+\frac{b^3-c^3}{\left(b-c\right)^3}+\frac{c^3-a^3}{\left(c-a\right)^3}\ge\frac{9}{4}\)

\(\LeftrightarrowΣ\frac{3\left(a+b\right)^2+\left(a-b\right)^2}{\left(a-b\right)^2}\ge4\)

\(\Leftrightarrow\frac{\left(a+b\right)^2}{\left(a-b\right)^2}+\frac{\left(b+c\right)^2}{\left(b-c\right)^2}+\frac{\left(c+a\right)^2}{\left(c-a\right)^2}\ge2\) 

Vậy chứng minh BĐT đầu bài quay ra chứng minh BĐT dòng đầu

\(\Leftrightarrow\frac{\left(a+b\right)^2}{\left(a-b\right)^2}-1+\frac{\left(b+c\right)^2}{\left(b-c\right)^2}-1+\frac{\left(c+a\right)^2}{\left(c-a\right)^2}-1\ge-1\)

\(\Leftrightarrow\frac{4ab}{\left(a-b\right)^2}+\frac{4bc}{\left(b-c\right)^2}+\frac{4ca}{\left(a-c\right)^2}\ge-1\)

\(\Leftrightarrow\frac{3ab}{\left(a-b\right)^2}+\frac{3bc}{\left(b-c\right)^2}+\frac{3ca}{\left(a-c\right)^2}\ge-\frac{3}{4}\)

\(\Leftrightarrow\frac{3ab}{\left(a-b\right)^2}+1+\frac{3bc}{\left(b-c\right)^2}+1+\frac{3ca}{\left(a-c\right)^2}+1\ge3-\frac{3}{4}\)

\(\Leftrightarrow\frac{a^2+ab+b^2}{\left(a-b\right)^2}+\frac{b^2+bc+c^2}{\left(b-c\right)^2}+\frac{c^2+ac+c^2}{\left(a-c\right)^2}\ge\frac{9}{4}\)

\(\Leftrightarrow\frac{a^3-b^3}{\left(a-b\right)^3}+\frac{b^3-c^3}{\left(b-c\right)^3}+\frac{c^3-a^3}{\left(a-c\right)^3}\ge\frac{9}{4}\)

BĐT cuối đúng nên ta có ĐPCM

27 tháng 5 2017

ko pic 

mik pic nhưng giải rất dài dòng

ai k mik 

mik kb hít lun nha

13 tháng 9 2016

1)Từ gt đề bài,ta có : (x2 - yz).y.(1 - xz) = (y2 - xz).x.(1 - yz)

=> 0 = VT - VP = (x2y - x3yz - y2z + xy2z2) - (xy2 - xy3z - x2z + x2yz2) = xy(x - y) - xyz(x2 - y2) + z(x2 - y2) + xyz2(y - x)

        = (x - y)[xy - xyz(x + y) + z(x + y) - xyz2] = (x - y)[xy + xz + yz - xyz(x + y + z)]

\(x\ne y\Rightarrow x-y\ne0\)nên xy + xz + yz - xyz(x + y + z) = 0 => xy + xz + yz = xyz(x + y + z)

\(xyz\ne0\)nên chia 2 vế cho xyz,ta có :\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)= x + y + z (đpcm)

Bạn ko hiểu chỗ nào thì hỏi mình nhé!

15 tháng 9 2016

Từ: \(\sqrt{a}+\sqrt{b}+\sqrt{c}=2\Rightarrow\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2=4\)
\(\Leftrightarrow a+b+c+2\sqrt{ab}+2\sqrt{ac}+2\sqrt{bc}=4\)
\(\Leftrightarrow\sqrt{ab}+\sqrt{ac}+\sqrt{bc}=1.\)vì a + b + c = 2
Từ đó: \(a+1=a+\sqrt{ab}+\sqrt{bc}+\sqrt{ac}=\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}+\sqrt{c}\right).\)
Tương tự: \(b+1=\left(\sqrt{b}+\sqrt{c}\right)\left(\sqrt{b}+\sqrt{a}\right)\)\(c+1=\left(\sqrt{c}+\sqrt{a}\right)\left(\sqrt{c}+\sqrt{b}\right).\)
Từ đó: \(\frac{2}{\sqrt{\left(a+1\right)\left(b+1\right)\left(c+1\right)}}=\frac{2}{\left(\sqrt{a}+\sqrt{c}\right)\left(\sqrt{b}+\sqrt{c}\right)\left(\sqrt{a}+\sqrt{b}\right)}.\)
Tương tự ta có: \(\frac{\sqrt{a}}{a+1}+\frac{\sqrt{b}}{b+1}+\frac{\sqrt{c}}{c+1}\)
\(=\frac{\sqrt{a}}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}+\sqrt{c}\right)}+\frac{\sqrt{b}}{\left(\sqrt{b}+\sqrt{c}\right)\left(\sqrt{b}+\sqrt{c}\right)}+\frac{\sqrt{c}}{\left(\sqrt{c}+\sqrt{b}\right)\left(\sqrt{c}+\sqrt{a}\right)}\)

\(=\frac{\sqrt{a}\left(\sqrt{b}+\sqrt{c}\right)+\sqrt{b}\left(\sqrt{a}+\sqrt{c}\right)+\sqrt{c}\left(\sqrt{a}+\sqrt{b}\right)}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}+\sqrt{c}\right)\left(\sqrt{b}+\sqrt{c}\right)}\)
\(=\frac{2\left(\sqrt{ab}+\sqrt{ac}+\sqrt{bc}\right)}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{b}+\sqrt{c}\right)\left(\sqrt{a}+\sqrt{c}\right)}=\frac{2}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{b}+\sqrt{c}\right)\left(\sqrt{a}+\sqrt{c}\right)}\).
Ta có: VP = VT nên có đpcm.
 

30 tháng 10 2020

a) Ta có: \(\frac{a-b}{\sqrt{a}-\sqrt{b}}-\frac{\sqrt{a^3}-\sqrt{b^3}}{a-b}\)

\(=\frac{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{a}-\sqrt{b}}-\frac{\left(\sqrt{a}-\sqrt{b}\right)\left(a+\sqrt{ab}+b\right)}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}\)

\(=\frac{\left(\sqrt{a}+\sqrt{b}\right)^2}{\sqrt{a}+\sqrt{b}}-\frac{a+\sqrt{ab}+b}{\sqrt{a}+\sqrt{b}}\)

\(=\frac{a+2\sqrt{ab}+b-a-\sqrt{ab}-b}{\sqrt{a}+\sqrt{b}}\)

\(=\frac{\sqrt{ab}}{\sqrt{a}+\sqrt{b}}\)

b)Sửa đề: \(\frac{\left(\sqrt{a}+\sqrt{b}\right)^2-4\sqrt{ab}}{\sqrt{a}-\sqrt{b}}-\frac{a\sqrt{b}+b\sqrt{a}}{\sqrt{ab}}\)

Ta có: \(\frac{\left(\sqrt{a}+\sqrt{b}\right)^2-4\sqrt{ab}}{\sqrt{a}-\sqrt{b}}-\frac{a\sqrt{b}+b\sqrt{a}}{\sqrt{ab}}\)

\(=\frac{\left(\sqrt{a}-\sqrt{b}\right)^2}{\left(\sqrt{a}-\sqrt{b}\right)}-\frac{\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{ab}}\)

\(=\sqrt{a}-\sqrt{b}-\sqrt{a}-\sqrt{b}\)

\(=-2\sqrt{b}\)

c) Ta có: \(\left(\frac{1}{\sqrt{a}-1}-\frac{1}{\sqrt{a}}\right):\left(\frac{\sqrt{a}+1}{\sqrt{a}-2}-\frac{\sqrt{a}+2}{\sqrt{a}-1}\right)\)

\(=\left(\frac{\sqrt{a}}{\sqrt{a}\left(\sqrt{a}-1\right)}-\frac{\sqrt{a}-1}{\sqrt{a}\left(\sqrt{a}-1\right)}\right):\left(\frac{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}-\frac{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}\right)\)

\(=\frac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\frac{a-1-a+4}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}\)

\(=\frac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}\cdot\frac{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}{3}\)

\(=\frac{\sqrt{a}-2}{3\sqrt{a}}\)

d) Ta có: \(\left(\frac{a\sqrt{a}+b\sqrt{b}}{\sqrt{a}+\sqrt{b}}-\sqrt{ab}\right)\left(\frac{\sqrt{a}+\sqrt{b}}{a-b}\right)^2\)

\(=\left(\frac{\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)}{\left(\sqrt{a}+\sqrt{b}\right)}-\sqrt{ab}\right)\left(\frac{\left(\sqrt{a}+\sqrt{b}\right)}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}\right)^2\)

\(=\left(a-\sqrt{ab}+b-\sqrt{ab}\right)\cdot\left(\frac{1}{\sqrt{a}-\sqrt{b}}\right)^2\)

\(=\left(a-2\sqrt{ab}+b\right)\cdot\frac{1}{\left(\sqrt{a}-\sqrt{b}\right)^2}\)

\(=\frac{\left(\sqrt{a}-\sqrt{b}\right)^2}{\left(\sqrt{a}-\sqrt{b}\right)^2}=1\)

e) Ta có: \(\left(\frac{\sqrt{x}}{3+\sqrt{x}}+\frac{x+9}{9-x}\right):\left(\frac{3\sqrt{x}+1}{x-3\sqrt{x}}-\frac{1}{\sqrt{x}}\right)\)

\(=\left(\frac{\sqrt{x}\left(3-\sqrt{x}\right)}{\left(3+\sqrt{x}\right)\left(3-\sqrt{x}\right)}+\frac{x+9}{\left(3+\sqrt{x}\right)\left(3-\sqrt{x}\right)}\right):\left(\frac{3\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-3\right)}-\frac{\sqrt{x}-3}{\sqrt{x}\left(\sqrt{x}-3\right)}\right)\)

\(=\frac{3\sqrt{x}+9}{\left(3+\sqrt{x}\right)\left(3-\sqrt{x}\right)}:\frac{3\sqrt{x}+1-\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}-3\right)}\)

\(=\frac{3\left(\sqrt{x}+3\right)}{-\left(\sqrt{x}-3\right)\cdot\left(\sqrt{x}+3\right)}\cdot\frac{\sqrt{x}\left(\sqrt{x}-3\right)}{2\left(\sqrt{x}+2\right)}\)

\(=\frac{-3\sqrt{x}}{2\sqrt{x}+4}\)

10 tháng 7 2017

Đề viết mệt quá nên thay \(\sqrt{a}=a;\sqrt{b}=b;\sqrt{c}=c\) viết lại đề tiện thể sửa đề luôn.

\(a^2+b^2=\left(a+b-c\right)^2\)

Chứng minh:

\(\frac{a^2+\left(a-c\right)^2}{b^2+\left(b-c\right)^2}=\frac{a-c}{b-c}\)

Ta có: \(a^2+b^2=\left(a+b-c\right)^2\)

\(\Leftrightarrow c^2-2ac-2bc+2ab=0\)

\(\Leftrightarrow a=\frac{c^2-2bc}{2c-2b}\)

Thế vô bài toán ta được

\(VT=\frac{\left(\frac{c^2-2bc}{2c-2b}\right)^2+\left(\frac{c^2-2bc}{2c-2b}-c\right)^2}{b^2+\left(b-c\right)^2}\)

\(=\frac{\left(\frac{c^2-2bc}{2c-2b}\right)^2+\left(\frac{c^2-2bc}{2c-2b}-c\right)^2}{b^2+\left(b-c\right)^2}\)

\(=\frac{\left(\frac{c^2-2bc}{2c-2b}\right)^2+\left(c^2\right)^2}{b^2+\left(b-c\right)^2}=\frac{2c^2\left(2b^2+c^2-2bc\right)}{\left(2b^2+c^2-2bc\right)4\left(c-b\right)^2}=\frac{c^2}{2\left(c-b\right)^2}\)

Ta lại có: 

\(VP=\frac{\frac{c^2-2bc}{2c-2b}-c}{b-c}=\frac{-c^2}{-2\left(c-b\right)^2}=\frac{c^2}{2\left(c-b\right)^2}\)

\(\Rightarrow\)ĐOCM

21 tháng 6 2019

\(B=\frac{9-x}{\sqrt{x}+3}-\frac{x-6\sqrt{x}+9}{\sqrt{x}-3}-6\)(đk: x ≥ 0 và x ≠ 9)

\(B=\frac{\left(3-\sqrt{x}\right)\left(3+\sqrt{x}\right)}{\sqrt{x}+3}-\frac{\left(\sqrt{x}-3\right)^2}{\sqrt{x}-3}-6\)

\(B=\left(3-\sqrt{x}\right)-\left(\sqrt{x}-3\right)-6\)

\(B=3-\sqrt{x}-\sqrt{x}+3-6\)

\(B=-2\sqrt{x}\)

21 tháng 6 2019

\(A=\frac{\sqrt{x}}{\sqrt{x}-6}-\frac{3}{\sqrt{x}+6}+\frac{x}{36-x}\)(đk: x ≥ 0 và x ≠ 36)

\(=\frac{\sqrt{x}}{\sqrt{x}-6}-\frac{3}{\sqrt{x}+6}-\frac{x}{x-36}\)

\(=\frac{\sqrt{x}}{\sqrt{x}-6}-\frac{3}{\sqrt{x}+6}-\frac{x}{x-36}\)

\(=\frac{\sqrt{x}\left(\sqrt{x}+6\right)-3\left(\sqrt{x-6}\right)-x}{(\sqrt{x}-6)\left(\sqrt{x}+6\right)}\)

\(=\frac{x+6\sqrt{x}-3\sqrt{x}+18-x}{(\sqrt{x}-6)\left(\sqrt{x}+6\right)}\)

\(=\frac{3\sqrt{x}+18}{(\sqrt{x}-6)\left(\sqrt{x}+6\right)}\)

\(=\frac{3(\sqrt{x}+6)}{(\sqrt{x}-6)\left(\sqrt{x}+6\right)}\)

\(=\frac{3}{\sqrt{x}-6}\)