Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\dfrac{1}{a^3\left(b+c\right)}+\dfrac{1}{b^3\left(c+a\right)}+\dfrac{1}{c^3\left(a+b\right)}\ge\dfrac{3}{2}\)
\(\dfrac{1^2}{a^3\left(b+c\right)}+\dfrac{1^2}{b^3\left(c+a\right)}+\dfrac{1^2}{c^3\left(a+b\right)}\ge\dfrac{3}{2}\)
\(\dfrac{a^2b^2c^2}{a^3\left(b+c\right)}+\dfrac{a^2b^2c^2}{b^3\left(c+a\right)}+\dfrac{a^2b^2c^2}{c^3\left(a+b\right)}\ge\dfrac{3}{2}\)
\(\dfrac{b^2c^2}{a\left(c+b\right)}+\dfrac{a^2c^2}{b\left(c+a\right)}+\dfrac{a^2b^2}{c\left(a+b\right)}\ge\dfrac{3}{2}\)
Áp dụng BĐT Svacxo ta có:
\(\dfrac{b^2c^2}{a\left(b+c\right)}+\dfrac{a^2c^2}{b\left(c+a\right)}+\dfrac{a^2b^2}{c\left(a+b\right)}\ge\dfrac{\left(ab+bc+ca\right)^2}{a\left(b+c\right)+b\left(a+c\right)+c\left(a+b\right)}\) \(\dfrac{b^2c^2}{a\left(b+c\right)}+\dfrac{a^2c^2}{b\left(c+a\right)}+\dfrac{a^2b^2}{c\left(a+b\right)}\ge\dfrac{\left(ab+bc+ca\right)}{2}\) (1)
Chứng minh: \(\dfrac{ab+bc+ca}{2}\ge\dfrac{3}{2}\Leftrightarrow ab+bc+ca\ge3\)
Áp dụng BĐT Cosi ta có:
\(ab+bc+ca\ge3\sqrt[3]{ab.bc.ca}\)
\(ab+bc+ca\ge3\) (2)
Từ (1) và (2)
=> ĐPCM
Bài này đã có ở đây:
Cho abc=1CMR\(\dfrac{a+3}{\left(a+1\right)^2}+\dfrac{b+3}{\left(b+1\right)^2}+\dfrac{c+3}{\left(c+1\right)^2}\ge3\) - Hoc24
Áp dụng BĐT Cauchy-Schwarz ta có:
\(\left(a^3+b^3+c^3\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge\left(a^3\cdot\dfrac{1}{a}+b^3\cdot\dfrac{1}{b}+c^3\cdot\dfrac{1}{c}\right)^2\)
\(\Leftrightarrow\left(a^3+b^3+c^3\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge\left(a^2+b^2+c^2\right)^2\)
Cần chỉ ra \(\left(a^2+b^2+c^2\right)^2\ge\left(a+b+c\right)^2\)
\(\Leftrightarrow a^2+b^2+c^2\ge a+b+c\left(a,b,c>0\right)\)
Đẳng thức xảy ra khi \(a=b=c=1\)
Cauchy-Schwarz 2 bộ (left(sqrt{a^3};sqrt{b^3};sqrt{c^3} ight);left(sqrt{dfrac{1}{a}};sqrt{dfrac{1}{b}};sqrt{dfrac{1}{c}} ight))
(left(a^3+b^3+c^2 ight)left(dfrac{1}{a}+dfrac{1}{b}+dfrac{1}{c} ight)geleft(sqrt{dfrac{a^3.1}{a}}+sqrt{dfrac{b^3.1}{b}}+sqrt{dfrac{c^3.1}{c}} ight)^2)
(Leftrightarrowleft(a^3+b^3+c^2 ight)left(dfrac{1}{a}+dfrac{1}{b}+dfrac{1}{c} ight)geleft(a^2+b^2+c^2 ight)^2)
Bđt cần c/m tương đương với :
(left(a^2+b^2+c^2 ight)^2geleft(a+b+c ight)^2)
(Leftrightarrow a^2+b^2+c^2ge a+b+c) ( vì a,b,c > 0 )
Phản đề :
Xét bộ (left(a;b;c ight)=left(dfrac{1}{4};dfrac{1}{4};dfrac{1}{4} ight))
(Leftrightarrowdfrac{3}{16}gedfrac{3}{4}left(sai ight))
Vậy bđt cần cm không tồn tại với a , b , c > 0
Đặt \(P=\dfrac{1}{a^3\left(b+c\right)}+\dfrac{1}{b^3\left(c+a\right)}+\dfrac{1}{c^3\left(a+b\right)}\)
\(P=\dfrac{\left(abc\right)^2}{a^3\left(b+c\right)}+\dfrac{\left(abc\right)^2}{b^3\left(c+a\right)}+\dfrac{\left(abc\right)^2}{c^3\left(a+b\right)}\)
\(P=\dfrac{\left(bc\right)^2}{a\left(b+c\right)}+\dfrac{\left(ca\right)^2}{b\left(c+a\right)}+\dfrac{\left(ab\right)^2}{c\left(a+b\right)}\)
\(P\ge\dfrac{\left(bc+ca+ab\right)^2}{a\left(b+c\right)+b\left(c+a\right)+c\left(a+b\right)}\) (BĐT B.C.S)
\(=\dfrac{ab+bc+ca}{2}\) \(\ge\dfrac{3\sqrt[3]{abbcca}}{2}=\dfrac{3}{2}\) (do \(abc=1\)).
ĐTXR \(\Leftrightarrow a=b=c=1\)
5) a) Ta có: \(a< b+c\)
\(\Rightarrow a^2< ab+ac\)
Tương tự: \(b^2< ba+bc\)
\(c^2< ca+cb\)
Cộng từng vế các BĐT vừa chứng minh, ta được đpcm
b) Ta có: \(\left(b+c-a\right)\left(b+a-c\right)=b^2-\left(c-a\right)^2\le b^2\)
\(\left(c+a-b\right)\left(c+b-a\right)=c^2-\left(a-b\right)^2\le c^2\)
\(\left(a+b-c\right)\left(a+c-b\right)=a^2-\left(b-c\right)^2\le a^2\)
Nhân từng vế các BĐT trên, ta được
\(\left[\left(b+c-a\right)\left(a+c-b\right)\left(a+b-c\right)\right]^2\le\left(abc\right)^2\)
Các biểu thức trong ngoặc vuông đều dương nên ta suy ra đpcm
Bài 5:
a)
Ta có \(a^2+b^2+c^2<2(ab+bc+ac)\)
\(\Leftrightarrow a(b+c-a)+b(a+c-b)+c(a+b-c)>0\)
Điều này hiển nhiên đúng vì $a,b,c$ là độ dài ba cạnh tam giác nên
\(b+c-a,a+b-c,c+a-b>0\)
b) Áp dụng BĐT Am-Gm:
\((a+b-c)(b+c-a)\leq \left ( \frac{a+b-c+b+c-a}{2} \right )^2=b^2\)
\((a+b-c)(c+a-b)\leq \left (\frac{a+b-c+c+a-b}{2}\right)^2=a^2\)
\((b+c-a)(a+c-b)\leq \left ( \frac{b+c-a+a+c-b}{2} \right )^2=c^2\)
Nhân theo vế :
\(\Rightarrow [(a+b-c)(b+c-a)(c+a-b)]^2\leq a^2b^2c^2\)
\(\Rightarrow (a+b-c)(b+c-a)(c+a-b)\leq abc\)
Do đó ta có đpcm
c)
\(a^3+b^3+c^3+2abc< a^2(b+c)+b^2(c+a)+c^2(a+b)\)
\(\Leftrightarrow a(ab+ac-a^2-bc)+b(ab+bc-b^2-ac)+c(ca+cb-c^2)>0\)
\(\Leftrightarrow a(a-c)(b-a)+b(b-c)(a-b)+c^2(a+b-c)>0\)
\(\Leftrightarrow (a-b)(b-a)(b+a-c)+c^2(b+a-c)>0\)
\(\Leftrightarrow (b+a-c)[c^2-(a-b)^2]>0\)
Điều này hiển nhiên đúng vì $a,b,c$ là độ dài ba cạnh tam giác thì \(b+a>c, c>|a-b|\)
Do đó ta có đpcm.
Bài 1:
Vì $a,b,c$ là 3 cạnh tam giác nên \(b+c-a; c+a-b; a+b-c>0\)
Áp dụng BĐT AM-GM cho các số dương:
\(\frac{a^2}{b+c-a}+(b+c-a)\geq 2\sqrt{a^2}=2a\)
\(\frac{b^2}{a+c-b}+(a+c-b)\geq 2\sqrt{b^2}=2b\)
\(\frac{c^2}{a+b-c}+(a+b-c)\geq 2\sqrt{c^2}=2c\)
Cộng theo vế và rút gọn:
\(\Rightarrow \frac{a^2}{b+c-a}+\frac{b^2}{c+a-b}+\frac{c^2}{a+b-c}+a+b+c\geq 2(a+b+c)\)
\(\Rightarrow \frac{a^2}{b+c-a}+\frac{b^2}{c+a-b}+\frac{c^2}{a+b-c}\geq a+b+c\) (đpcm)
Dấu "=" xảy ra khi $a=b=c$
Bài 2:
Áp dụng BĐT AM-GM cho các số dương ta có:
\(ab+\frac{a}{b}\geq 2\sqrt{ab.\frac{a}{b}}=2a\)
\(ab+\frac{b}{a}\geq 2\sqrt{ab.\frac{b}{a}}=2b\)
\(\frac{a}{b}+\frac{b}{a}\geq 2\sqrt{\frac{a}{b}.\frac{b}{a}}=2\)
Cộng theo vế và rút gọn:
\(\Rightarrow 2(ab+\frac{a}{b}+\frac{b}{a})\geq 2(a+b+1)\)
\(\Rightarrow ab+\frac{a}{b}+\frac{b}{a}\geq a+b+1\)
Ta có đpcm
Dấu "=" xảy ra khi $a=b=1$
Áp dụng BĐT AM-GM ta có:
\(\dfrac{1}{a^3\left(b+c\right)}+\dfrac{a\left(b+c\right)}{4}\ge2\sqrt{\dfrac{1}{a^3\left(b+c\right)}.\dfrac{a\left(b+c\right)}{4}=2\sqrt{\dfrac{1}{4a^2}=\dfrac{1}{a}=\dfrac{abc}{a}=bc}}\)
Tương tự:
\(\dfrac{1}{b^3\left(c+a\right)}+\dfrac{b\left(c+a\right)}{4}\ge\dfrac{1}{b}=ac\)
\(\dfrac{1}{c^3\left(a+b\right)}+\dfrac{c\left(a+b\right)}{4}\ge\dfrac{1}{c}=ab\)
Cộng theo vế:
\(\Rightarrow VT+\dfrac{ab+bc+ac}{2}\ge ab+bc+ac\)
\(\Rightarrow VT\ge\dfrac{ab+bc+ac}{2}\)
Tiếp tục áp dụng AM-GM: \(ab+bc+ac\ge3^3\sqrt{a^2b^2c^2}=3\)
\(\Rightarrow VT\ge\dfrac{3}{2}\left(đpcm\right)\)
Dấu bằng xảy ra khi a=b=c=1
dùng kiến thức lớp 8 đi bạn