Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: A = 20022 = 20022.1
B = 20033 = 20032 . 2003
Vì 20022 < 20032 và 1 < 2003 => A < b
C= 2002.2004 = (2003-1)(2003 +1) = 20032 -1< 20032 = D
C< D => 2002.C < 2003.D
=> 2002 . 2002.2004 < 2003. 20032
hay 20022 .2004 < 20033
ta có : a^2 +b^2 =c^2 +d^2 => a^2 -c^2=d^2-b^2
<=> (a-c)(a+c)=(d-b)(d+b) (1)
Mặt khác : a+b=c+d => a-c=d-b (2)
Từ (1),(2) => (a-c)(a+c-d-b)=0
⇒[
a−c=0 |
a+c−d−b=0 |
xét TH1: a-c=0 =>a=c mà a+b=c+d => a=c ; b=d
=> a^2002 +b^2002 =c^2002 +d^2002 (đpcm
xét TH2: a+c-d-b=0
⇒{
a−b=d−c |
a+b=c+d |
⇒{
a=d |
b=c |
https://olm.vn/hoi-dap/question/1051251.html
vào đây mà gợi ý nhé
số ab này bằng 1 hoặc bằng 0 nên a^2011+b^2011 bằng 0 hoặc 1 và tất nhên nó băng mấy cái trên
a;b \(\in\){0;1}
TH1: a;b =0
a2011+b2011=0^2011+0^2011=0
TH2: a;b=1
a^2011 + b^2011 = 1 + 1 = 2
Bạn nào trả lời bài này nhanh nhất thì add vs mk , mk sẽ tặng 1 thẻ điện thoại 50k cho 2 bạn trả lời nhanh nhất nhé!
Nhanh các bạn ơi!!!
Hứa k bùng đâu
Bạn ghi đề nhớ để dấu cho đúng nhé.
\(1.\) Cho \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=1\) \(\left(1\right)\)
\(CMR:\) \(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}=0\)
\(----------------------\)
Ta có:
Từ \(\left(1\right)\) \(\Rightarrow\) \(\left(a+b+c\right)\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)=a+b+c\)
\(\Leftrightarrow\) \(\frac{a^2}{b+c}+\frac{ab}{c+a}+\frac{ca}{a+b}+\frac{ab}{b+c}+\frac{b^2}{c+a}+\frac{bc}{a+b}+\frac{ca}{b+c}+\frac{bc}{c+a}+\frac{c^2}{a+b}=a+b+c\)
\(\Leftrightarrow\) \(\frac{a^2}{b+c}+\left(\frac{ab}{b+c}+\frac{ca}{b+c}\right)+\frac{b^2}{c+a}+\left(\frac{ab}{c+a}+\frac{bc}{c+a}\right)+\frac{c^2}{a+b}+\left(\frac{ca}{a+b}+\frac{bc}{a+b}\right)=a+b+c\)
\(\Leftrightarrow\) \(\frac{a^2}{b+c}+a+\frac{b^2}{c+a}+b+\frac{c^2}{a+b}+c=a+b+c\)
\(\Leftrightarrow\) \(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}=0\) \(\left(đpcm\right)\)
\(\text{Chắc bn ghi thiếu đề :}\)
\(\hept{\begin{cases}a+b+c=0\\a^2+b^2+c^2=1\end{cases}}\)
\(Tính\)\(a^4+b^4+c^4\)
\(Giải:\)\(\text{Đặt}\)\(M=a^4+b^4+c^4\)
\(\left(a^2+b^2+c^2\right)^2=a^4+b^4+c^4+2a^2b^2+2b^2c^2+2c^2a^2\)
\(1=M=\left(2a^2b^2+2b^2c^2+2c^2a^2\right)\)
\(M=1-\left(2a^2b^2+2b^2c^2+2c^2a^2\right)=1-2\left(a^2b^2+b^2c^2+c^2a^2\right)\)
\(\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2bc+2ac\)
\(0=1+2ab+2ac+2bc\)
\(2\left(ab+ac+bc\right)=-1\Rightarrow ab+ac+bc=-\frac{1}{2}\)
\(\left(ab+ac+bc\right)^2=a^2b^2+a^2c^2+b^2c^2+2\left(a^2bc+ab^2c+abc^2\right)\)
\(\frac{1}{4}=^2b^2+a^2c^2+b^2c^2+2abc\left(a+b+c\right)\)
\(\Rightarrow^2b^2+a^2c^2+b^2c^2=\frac{1}{4}.0\left(vì\right)a+b+c=0\)
\(M=1-2.\frac{1}{4}=\frac{1}{2}\)
Ta thấy : a+b=c+d => \(\left(a+b\right)^2=\left(c+d\right)^2\)
<=> \(a^2+2ab+b^2=c^2+2cd+d^2\)(1)
Mà \(a^2+b^2=c^2+d^2\)(2)
Từ (1)(2) => 2ab=2cd => ab=cd => \(\frac{a}{d}=\frac{c}{b}=k\)
=> a=dk; c=bk
Ta xét : \(a^2+b^2=c^2+d^2\)
<=> \(\left(dk\right)^2+b^2=\left(bk\right)^2+d^2\)
<=> \(d^2\left(k^2-1\right)=b^2\left(k^2-1\right)\)
<=> \(\left(d^2-b^2\right)\left(k^2-1\right)=0\)
=>\(\left[\begin{array}{nghiempt}d^2-b^2=0\\k^2-1=0\end{array}\right.\)<=> \(\left[\begin{array}{nghiempt}d=\pm b\\k=\pm1\end{array}\right.\)
Th1 :d=\(\pm b\) mà \(\frac{a}{d}=\frac{c}{b}\)=> a=\(\pm c\)
=> \(d^{2002}=b^{2002};a^{2002}=c^{2002}\)
=> \(a^{2002}+b^{2002}=c^{2002}+d^{2002}\)(3)
Th2: k=\(\pm1\) => a\(=\pm d;c=\pm b\)
=> \(a^{2002}=d^{2002};c^{2002}=b^{2002}\)
=> \(a^{2002}+b^{2002}=c^{2002}+d^{2002}\)(4)
Từ (3)(4)=> đpcm
t
Có a2 + b2 = c2 + d2
=> a2 - c2 = d2 - b2
=> (a - c)(a + c) = (d - b)(d + b)
Mà a + b = c + d
=> a - c = d - b
- Nếu a = c
=> a - c = d - b = 0
=> d = b
=> a2002 = c2002 và d2002 = b2002
=> a2002 + b2002 = c2002 + d2002 (Đpcm)
- Nếu a \(\ne\) c
=> a - c = d - b (\(\ne\) 0)
=> d \(\ne\) b
Có (a - c)(a + c) = (d - b)(d + b)
=> a + c = d + b (1)
Mà a + b = c + d (2)
Lấy (1) + (2) ta được:
2a + b + c = b + c + 2d
=> 2a = 2d
=> a = d
=> c = b
=> a2002 = d2002 và c2002 = b2002
=> a2002 + b2002 = c2002 + d2002 (Đpcm)