Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có a(b+c)^2 +b(c+a)^2+c(a+b)^2 =4abc
ab^2+ac^2+2abc+ba^2bc^2+2abc+ca^2+cb^2+2abc=4abc
ab^2+ac^2+bc^2+ba^2+cb^2+ca^2+2abc=0
(ab^2+abc)+(ac^2+abc)+(bc^2+cb^2)+(a^2b+a^2c)=0
ab(b+c)+ac(b+c)+bc(b+c)+a^2(b+c)=0
(b+c)(ab+ac+bc+a^2)=0
(b+c)(a+b)(a+c)=0
*th1:b+c=0=> b=-c
=> b^2017 +c^2017 =0
mà a^2017 +b^2017 +c^2017=1
=>a^2017=1 => a=1
thay vào A rồi dc A=1
các th khác tương tự
\(\Rightarrow\frac{a+b+c}{a}+\frac{a+b+c}{b}+\frac{a+b+c}{c}-\frac{a+b+c}{a+b+c}=0\)
\(\Rightarrow\left(a+b+c\right).\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}-\frac{1}{a+b+c}\right)=0\)
xét: \(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}-\frac{1}{a+b+c}=0\left(\text{vì a+b+c khác 0}\right)\)
\(\text{ta có: }\frac{1}{a}+\frac{1}{b}+\frac{1}{c}-\frac{1}{a+b+c}=0\)
\(\Rightarrow\frac{ab+bc+ac}{abc}-\frac{1}{a+b+c}=0\)
\(\Rightarrow\frac{\left(ab+bc+ac\right).\left(a+b+c\right)-abc}{abc.\left(a+b+c\right)}=0\)
\(\Rightarrow\left(ab+bc+ac\right).\left(a+b+c\right)-abc=0\)
\(\Rightarrow\left(b+a\right).\left(c+a\right).\left(c+b\right)=0\)
\(\Rightarrow\hept{\begin{cases}b=-a\\a=-c\\c=-b\end{cases}}\)
\(M=\left(-b^{101}+b^{101}\right).\left(-c^{2017}+c^{2017}\right).\left(b^{2019}+-b^{2019}\right)=0\)
p/s: dài nhỉ =)
\(a+b=c+\frac{1}{2019}\Leftrightarrow a+b-c=\frac{1}{2019}\Leftrightarrow\frac{1}{a+b-c}=2019\)
\(\frac{1}{a}+\frac{1}{b}=\frac{1}{c}+2019\Rightarrow\frac{1}{a}+\frac{1}{b}-\frac{1}{c}=2019\)
\(\Rightarrow\frac{1}{a}+\frac{1}{b}-\frac{1}{c}=\frac{1}{a+b-c}\Rightarrow\frac{1}{a}+\frac{1}{b}=\frac{1}{a+b-c}+\frac{1}{c}\)
\(\Leftrightarrow\frac{a+b}{ab}=\frac{a+b}{c\left(a+b-c\right)}\Leftrightarrow c\left(a+b-c\right)\left(a+b\right)=\left(a+b\right)ab\)
\(\Leftrightarrow c\left(a+b-c\right)\left(a+b\right)-ab\left(a+b\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left(ca+bc-c^2-ab\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left[c\left(a-c\right)-b\left(a-c\right)\right]=0\)
\(\Leftrightarrow\left(a+b\right)\left(c-b\right)\left(a-c\right)=0\)
=>a=-b hoặc c=b hoặc a=c
không mất tính tổng quát, giả sử a=-b, ta có:
\(P=\left(-b^{2019}+b^{2019}-c^{2019}\right)\left(-\frac{1}{b^{2019}}+\frac{1}{b^{2019}}-\frac{1}{c^{2019}}\right)=\left(-c\right)^{2019}\cdot\left(\frac{-1}{c}\right)^{2019}=1\)
tương tư với các trường hợp khác ta cũng có P=1
Vậy P=1
\(\frac{1}{a}+\frac{1}{c}=\frac{1}{a-b+c}+\frac{1}{b}\Leftrightarrow\frac{a+c}{ac}=\frac{a+c}{b\left(a-b+c\right)}\)
\(\Rightarrow\left[{}\begin{matrix}a+c=0\\ac=b\left(a-b+c\right)\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}a=-c\\ac=b\left(a-b\right)+bc\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}a=-c\\ac-bc-b\left(a-b\right)=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}a=-c\\\left(c-b\right)\left(a-b\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}a=-c\\a=b\left(l\right)\\b=c\left(l\right)\end{matrix}\right.\) do \(a< b< c\) \(\Rightarrow a=-c\)
\(\Rightarrow\frac{1}{a^{2019}}-\frac{1}{b}+\frac{1}{c^{2019}}=\frac{1}{a^{2019}}-\frac{1}{b}-\frac{1}{a^{2019}}=\frac{-1}{b}\)
\(\frac{1}{a^{2019}-b+c^{2019}}=\frac{1}{a^{2019}-b-c^{2019}}=\frac{-1}{b}\)
\(\Rightarrow\frac{1}{a^{2019}}-\frac{1}{b}+\frac{1}{c^{2019}}=\frac{1}{a^{2019}-b+c^{2019}}\)
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\Leftrightarrow\frac{a+b}{ab}+\frac{1}{c}-\frac{1}{a+b+c}=0\)
\(\Leftrightarrow\frac{a+b}{ab}+\frac{a+b}{c\left(a+b+c\right)}=0\Leftrightarrow\left(a+b\right)\left(\frac{1}{ab}+\frac{1}{ac+bc+c^2}\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left(ab+bc+ca+c^2\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a+b=0\\b+c=0\\c+a=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}a=3\\b=3\\c=3\end{matrix}\right.\)
\(\Rightarrow\left(a-3\right)^{2017}\left(b-3\right)^{2018}\left(c-3\right)^{2019}=0\)
\(a+b+c=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
\(\Rightarrow2.\left(a+b+c\right)=a+b+c+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
Áp dụng BĐT Cauchy-Schwarz ta có:
\(a+b+c+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge2\sqrt{a.\frac{1}{a}}+2\sqrt{b.\frac{1}{b}}+2\sqrt{c.\frac{1}{c}}\)
\(=2+2+2=6\)
\(\Rightarrow a+b+c\ge3\)
\(P=a+b^{2019}+c^{2020}\)
\(=a+\left(b^{2019}+1.2018\right)+\left(c^{2020}+1.2019\right)-4037\)
\(\ge a+2019.\sqrt[2019]{b^{2019}.1^{2018}}+2020.\sqrt[2020]{c^{2020}.1^{2019}}-4037\)(BDT Cauchy-Schwarz)
\(=a+2019b+2020c-4037\)
Do \(a\le b\le c\)nên
\(\Rightarrow P\ge a+2019b+2020c\)
\(\ge a+\left(\frac{2017}{3}+\frac{4040}{3}\right)b+\left(\frac{2020}{3}+\frac{4040}{3}\right)c-4037\)
\(\ge a+\frac{2017}{3}a+\frac{4040}{3}b+\frac{2020}{3}a+\frac{4040}{3}c-4037\)
\(=\frac{4040}{3}.\left(a+b+c\right)-4037\)
\(\ge4040-4037=3\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c=1\)
Vì a ; b ; c dương \(\Rightarrow a+b+c\ne0\)
Ta có : \(a^3+b^3+c^3=3abc\)
\(\Leftrightarrow a^3+b^3+c^3-3abc=0\)
\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)
\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ac=0\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\Leftrightarrow a-b=0;b-c=0;c-a=0\Leftrightarrow a=b=c\)
Vậy \(A=\left(1-\frac{a}{b}\right)\left(2018-\frac{b}{c}\right)\left(2019-\frac{c}{a}\right)=\left(1-1\right).\left(...\right)=0\)
Bài 1:
\(A=\frac{1}{a-b}+\frac{1}{a+b}+\frac{2a}{a^2+b^2}+\frac{4a^3}{a^4+b^4}+\frac{8a^7}{a^8+b^8}\)
\(=\frac{a+b+a-b}{(a-b)(a+b)}+\frac{2a}{a^2+b^2}+\frac{4a^3}{a^4+b^4}+\frac{8a^7}{a^8+b^8}=\frac{2a}{a^2-b^2}+\frac{2a}{a^2+b^2}+\frac{4a^3}{a^4+b^4}+\frac{8a^7}{a^8+b^8}\)
\(=(2a).\frac{a^2+b^2+a^2-b^2}{(a^2-b^2)(a^2+b^2)}+\frac{4a^3}{a^4+b^4}+\frac{8a^7}{a^8+b^8}\)
\(=\frac{4a^3}{a^4-b^4}+\frac{4a^3}{a^4+b^4}+\frac{8a^7}{a^8+b^8}\)
\(=4a^3.\frac{a^4+b^4+a^4-b^4}{(a^4-b^4)(a^4+b^4)}+\frac{8a^7}{a^8+b^8}=\frac{8a^7}{a^8-b^8}+\frac{8a^7}{a^8+b^8}=8a^7.\frac{a^8+b^8+a^8-b^8}{(a^8-b^8)(a^8+b^8)}\)
\(=\frac{16a^{15}}{a^{16}-b^{16}}\)
--------------
\(B=\frac{1}{a(a+1)}+\frac{1}{(a+1)(a+2)}+\frac{1}{(a+2)(a+3)}=\frac{(a+1)-a}{a(a+1)}+\frac{(a+2)-(a+1)}{(a+1)(a+2)}+\frac{(a+3)-(a+2)}{(a+2)(a+3)}\)
\(=\frac{1}{a}-\frac{1}{a+1}+\frac{1}{a+1}-\frac{1}{a+2}+\frac{1}{a+2}-\frac{1}{a+3}\)
\(=\frac{1}{a}-\frac{1}{a+3}=\frac{3}{a(a+3)}\)
Bài 2:
Bạn tham khảo lời giải tương tự tại link sau:
Câu hỏi của Law Trafargal - Toán lớp 8 | Học trực tuyến
mn oi giúp tớ với