K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét ΔAHB vuông tại H có HM là đường cao ứng với cạnh huyền AB

nên \(AM\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HN là đường cao ứng với cạnh huyền AC

nên \(AN\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)

hay \(\dfrac{AM}{AC}=\dfrac{AN}{AB}\)

Xét ΔAMN và ΔACB có

\(\dfrac{AM}{AC}=\dfrac{AN}{AB}\)

\(\widehat{MAN}\) chung

Do đó: ΔAMN\(\sim\)ΔACB

AH
Akai Haruma
Giáo viên
18 tháng 11 2021

Lời giải:
a. Áp dụng hệ thức lượng trong tam giác vuông:

$AM.AB=AH^2$
$AN.AC=AH^2$

$\Rightarrow AM.AB=AN.AC$ (đpcm)

b.

Vì $AM.AB=AN.AC\Rightarrow \frac{AM}{AN}=\frac{AC}{AB}$

Xét tam giác $AMN$ và $ACB$ có:

$\widehat{A}$ chung

$\frac{AM}{AN}=\frac{AC}{AB}$ (cmt)

$\Rightarrow \triangle AMN\sim \triangle ACB$ (c.g.c)

Ta có đpcm.

AH
Akai Haruma
Giáo viên
18 tháng 11 2021

Hình vẽ:

25 tháng 8 2023
Để chứng minh MN = AD.sin(BAC), ta sẽ sử dụng định lí sin.

Trong tam giác AMN, ta có:

MN = AN.sin(∠MAN) (định lí sin)

Vì MN là hình chiếu vuông góc của D lên AB và AC, nên AN = AD.cos(∠BAC) và AM = AD.cos(∠CAB). Thay vào công thức trên, ta có:

MN = AD.cos(∠CAB).sin(∠BAC)

Do đó, để chứng minh MN = AD.sin(BAC), ta cần chứng minh rằng:

cos(∠CAB).sin(∠BAC) = sin(∠BAC)

Áp dụng định lí sin, ta có:

cos(∠CAB).sin(∠BAC) = sin(∠BAC).cos(∠CAB)

Vì cos(∠CAB) = cos(90° - ∠BAC) = sin(∠BAC), nên:

sin(∠BAC).cos(∠CAB) = sin(∠BAC).sin(∠BAC) = sin^2(∠BAC)

Vậy, MN = AD.sin(BAC).

Như vậy, đã chứng minh hai điều kiện trên.

29 tháng 5 2021

A B C H M N

a, Vì HM là đường cao => \(HM\perp AB\)=> ^HMA = 900

Vì HN là đường cao => \(HN\perp AC\)=> ^HNA = 900

Xét tứ giác AMHN có : 

^HMA + ^HNA = 900

mà ^HMA ; ^HNA đối nhau 

Vậy tứ giác AMHN nội tiếp

29 tháng 5 2021

b, Xét tam giác ABH vuông tại H, đường cao HM ta có : 

\(AH^2=AM.AB\)(1)

Xét tam giác ACH vuông tại H, đường cao HN ta có : 

\(AH^2=AN.AC\)(2) 

từ (1) ; (2) suy ra : \(AM.AB=AN.AC\Rightarrow\frac{AM}{AC}=\frac{AN}{AB}\)

Xét tam giác AMN và tam giác ACB ta có : 

^A chung 

\(\frac{AM}{AC}=\frac{AN}{AB}\)( cmt )

Vậy tam giác AMN ~ tam giác ACB ( c.g.c )

b: Xét ΔAHB vuông tại H có HM là đường cao ứng với cạnh huyền AB

nên \(AM\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HN là đường cao ứng với cạnh huyền AC
nên \(AN\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)

30 tháng 5 2021

a) Ta có \(\widehat{AMH}=\widehat{ANH}\) nên tứ giác AMHN nội tiếp đường tròn đường kính AH.

b) Tứ giác AMHN nội tiếp nên \(\widehat{AMN}=\widehat{AHN}=\widehat{ACB}\Rightarrow\Delta AMN\sim\Delta ACB\left(g.g\right)\)

30 tháng 5 2021

Bạn có hình vẽ ko

 

a: Xét ΔAHB vuông tại H có HM là đường cao

nên \(AM\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HN là đường cao

nen \(AN\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)

hay AM/AC=AN/AB

Xét ΔAMN và ΔACB có

AM/AC=AN/AB

góc MAN chung

Do đó: ΔAMN đồng dạng với ΔACB

b: \(\dfrac{BC}{cotB+cotC}=BC:\left(\dfrac{BH}{AH}+\dfrac{CH}{AH}\right)\)

\(=BC:\dfrac{BC}{AH}=AH\)

12 tháng 9 2021

có thể theo hệ thức lượng(gợi ý)

ta có Sabc=1/2ab.ac (trong tg vuông dg cao là cạnh góc vuông)

         Sabc=1/2ah.bc

=>ah.bc=ab.ac (có thể xét tg đồng dạng rồi lập tỉ số)

 

b: Xét ΔABH vuông tại H có HM là đường cao ứng với cạnh huyền AB

nên \(AM\cdot AB=AH^2\left(1\right)\)

Xét ΔACH vuông tại H có HN là đường cao ứng với cạnh huyền AC

nên \(AN\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)

hay \(\dfrac{AM}{AC}=\dfrac{AN}{AB}\)

Xét ΔAMN vuông tại A và ΔACB vuông tại A có 

\(\dfrac{AM}{AC}=\dfrac{AN}{AB}\)

Do đó: ΔAMN\(\sim\)ΔACB