K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 8 2016

a, tam giác ABH có: góc  ABH=90 độ,vuông góc với AB 

Suy ra: AM.AB=AH^2(Đ/L)

CMTT tam giác AHC: AN.AC=AH^2(Đ/L)

cả hai diều suy ra:AM.AB=AN.AC

11 tháng 8 2016

phần b nghĩ ra chưa làm nốt cho

16 tháng 8 2017

A B C H N M

hình không đẹp lắm, mong cậu thông cảm.

Có : AH là đường cao của tam giác ABC=> goc AHB =900

Tam giác AHB vuông tại H có AM là đường cao

=> AM.AB = AH2 (dinh li d/cao trong tam giac vuong

Tam giac AHC vuong tai H có AN là đường cao

=> AN.AC = AH2 (dinh li d/cao trong tam giac vuong

Nen AM.AB =AN.AC

b,Tam giác AHB vuông tại H,=> cot B = BH/AH

Tam giác AHC vuông tại H => cotC = CH/AH

Co H thuoc BC (gt) => BC=BH+CH =[AH(BH+CH)]/AH=AH(cot B+cotC)

AH
Akai Haruma
Giáo viên
16 tháng 7 2018

Lời giải:

a)

Xét tam giác $MAH$ và $HAB$ có:

\(\left\{\begin{matrix} \widehat{AMH}=\widehat{AHB}=90^0\\ \text{góc A chung}\end{matrix}\right.\Rightarrow \triangle MAH\sim \triangle HAB(g.g)\)

Do đó: \(\frac{MA}{HA}=\frac{AH}{AB}\Rightarrow MA.AB=HA^2(1)\)

Hoàn toàn tương tự:

\(\triangle ANH\sim \triangle AHC\Rightarrow \frac{AN}{AH}=\frac{AH}{AC}\Rightarrow AN.AC=AH^2(2)\)

\(\Rightarrow AN.AC=AM.AB\) (đpcm)

b)

Với tam giác $ABC$ nhọn bất kỳ, ta có công thức sau:

\(S_{ABC}=\frac{1}{2}AB.AC\sin A\)

Chứng minh: Kẻ \(BH\perp AC\). Khi đó \(S_{ABC}=\frac{BH.AC}{2}\)

Mà: \(\frac{BH}{AB}=\sin A\Rightarrow BH=AB.\sin A\)

\(\Rightarrow S_{ABC}=\frac{BH.AC}{2}=\frac{AB.\sin A.AC}{2}\) (đpcm)

Áp dụng công thức trên vào bài toán:

\(S_{AMN}=\frac{1}{2}.AM.AN\sin A\)

\(S_{ABC}=\frac{1}{2}AB.AC\sin A\)

\(\Rightarrow \frac{S_{AMN}}{S_{ABC}}=\frac{AM.AN}{AB.AC}=\frac{AM.AB.AN.AC}{AB^2.AC^2}=\frac{AH^2.AH^2}{AB^2.AC^2}\) (theo phần a)

\(=\left(\frac{AH}{AB}\right)^2\left(\frac{AH}{AC}\right)^2=\sin ^2B.\sin ^2C\) (đpcm)

AH
Akai Haruma
Giáo viên
16 tháng 7 2018

Hình vẽ:
Hệ thức lượng trong tam giác vuông

b: \(BD^2-CD^2\)

\(=BM^2+MD^2-CM^2-MD^2\)

\(=BM^2-CM^2=BM^2-MA^2=BA^2\)

a: AB/AC=2/3 nên HB/HC=4/9

=>HB=4/9x12=48/9=16/3cm

\(AH=\sqrt{\dfrac{16}{3}\cdot12}=\sqrt{16\cdot4}=8\left(cm\right)\)

c: Xét ΔABC vuông tại A có AH là đường cao

nên \(AB^2=BH\cdot BC\)

=>BH(BH+9)=400

=>BH=16cm

=>BC=25cm

\(AC=\sqrt{25^2-20^2}=15\left(cm\right)\)

\(S_{ABC}=\dfrac{15\cdot20}{2}=150\left(cm^2\right)\)