Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C E F H I
Giải
a) Xét \(\Delta BHF\) và \(\Delta CHE\) có:
\(\widehat{BHF}=\widehat{CHE}\) (vì đối đỉnh)
\(\widehat{BFH}=\widehat{CEH}=90^o\)
=> \(\Delta BHF\) s \(\Delta CHE\) (g - g)
b) Xét \(\Delta ABE\) và \(\Delta ACF\) có:
\(\widehat{A}\) là góc chung
\(\widehat{AEB}=\widehat{AFC}=90^o\)
=> \(\Delta ABE\) s \(\Delta ACF\) (g - g)
=> \(\frac{AB}{AC}=\frac{AE}{AF}\)
=> AF . AB = AE . AC
c) Xét \(\Delta AEF\) và \(\Delta ABC\) có:
\(\widehat{A}\) là góc chung
\(\frac{AE}{AB}=\frac{AF}{AC}\) (vì \(\Delta ABE\) s \(\Delta ACF\))
=> \(\Delta AEF\)s \(\Delta ABC\) (c - g - c)
d) Câu d mình không nghĩ ra. Bạn tự làm nha, chắc là xét tam giác đồng dạng rồi suy ra hai góc bằng nhau và sẽ suy ra đường phân giác đó.
a: Xét ΔAEH vuông tại E và ΔADC vuông tại D có
góc EAH chung
=>ΔAEH đồng dạng với ΔADC
Xét ΔAFH vuông tại F và ΔADB vuông tại D có
góc FAH chung
=>ΔAFH đồng dạng với ΔADB
b: ΔAEH đồng dạng với ΔADC
=>AE/AD=AH/AC
=>AE*AC=AD*AH
ΔAFH đồng dạng với ΔADB
=>AF/AD=AH/AB
=>AF*AB=AH*AD=AE*AC
c: BH*BE+CH*CF
=BD*BC+CD*BC
=BC^2
a) Xét ΔAEB vuông tại E và ΔAFC vuông tại F có
\(\widehat{BAC}\) chung
Do đó: ΔAEB\(\sim\)ΔAFC(g-g)
Suy ra: \(\dfrac{AE}{AF}=\dfrac{AB}{AC}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)
Xét ΔAEF và ΔABC có
\(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)(cmt)
\(\widehat{EAF}\) chung
Do đó: ΔAEF\(\sim\)ΔABC(c-g-c)
a: Xét ΔAEB vuông tại E và ΔAFC vuông tại F có
\(\widehat{BAE}\) chung
Do đó: ΔAEB\(\sim\)ΔAFC
b: Ta có: ΔAEB\(\sim\)ΔAFC
nên AE/AF=AB/AC
hay AE/AB=AF/AC
Xét ΔAEF và ΔABC có
AE/AB=AF/AC
\(\widehat{EAF}\) chung
DO đó: ΔAEF\(\sim\)ΔABC
a: Xét ΔBDA vuông tại D và ΔBFC vuông tại F co
góc B chung
=>ΔBDA đồng dạng vói ΔBFC
b: góc BFC=góc BEC=90 độ
=>BFEC nội tiếp
=>góc AFE=góc ACB
=>ΔAFE đồng dạng vói ΔACB
c: Xét ΔAEH vuông tại E và ΔADC vuông tại D có
góc EAH chung
=>ΔAEH đồng dạng vói ΔADC
=>AD*AH=AE*AC
Xét ΔCEH vuông tại E và ΔCFA vuông tại F có
góc ECH chung
=>ΔCEH đồng dạng vói ΔCFA
=>CH*CF=CE*CA
=>AH*AD+CH*CF=CA^2
a, Xét \(\Delta ACF\) và \(\Delta ABE\) có:
\(\widehat{AFC}=\widehat{AEB}=90^0\)
\(\widehat{BAC}\) là góc chung
\(\Rightarrow\Delta ACF~\Delta ABE\left(g.g\right)\)
\(\Rightarrow\frac{AC}{AB}=\frac{AF}{AE}\)
\(\Rightarrow AC.AE=AB.AF\)
Xét \(\Delta AEF\) và \(\Delta ABC\) có:
\(\widehat{CAB}\) là góc chung
\(\frac{AE}{AB}=\frac{AF}{AC}\)
\(\Rightarrow\Delta AEF~\Delta ABC\left(c.g.c\right)\)
b, Xét \(\Delta BDH\) và \(\Delta BEC\) có:
\(\widehat{EBC}\) là góc chung
\(\widehat{BEC}=\widehat{BDH}=90^0\)
\(\Rightarrow\Delta BDH~\Delta BEC\left(g.g\right)\)
\(\Rightarrow\frac{BH}{BC}=\frac{BD}{BE}\)
\(\Rightarrow BE.BH=BC.BD\left(1\right)\)
Tương tự như trên ta được: \(\Delta CDH~\Delta CFB\left(g.g\right)\)
\(\Rightarrow\frac{CH}{CB}=\frac{CD}{CF}\)
\(\Rightarrow CF.CH=CD.CB\left(2\right)\)
Từ (1) và (2) \(\Rightarrow BE.BH+CH.CF=BD.BC+BC.CD=BC\left(BD.CD\right)=BC^2\)
\(\Rightarrow BH.BE+CH.CF=BC^2\)
d,EI _|_ AB ; CE _|_ AB => EI // CE => AI/IF = AE/EC (đl)
EK _|_ AD; CD _|_ AD => EK // CD => AK/KD = AE/EC (đl)
=> AI/IF = AK/KD; xét tam giac AFD
=> IK // FD (1)
ER _|_ BC; AD _|_ BC => ER // AD => CR/RD = CE/EA (đl)
EQ _|_ CF; AF _|_ CF => AH // AF => CH/FH = CE/AE (đl)
=> CR/RD = CH/FH; xét tam giác CFD
=> HR // FD (2)
EK _|_ AD; AD _|_ BD => EK // BD => KH/HD = EH/HB (đl)
EH _|_ CF; CF _|_ BF => EH // FB => EH/HB = QH/HF (đl)
=> KH/HD = QH/HF
=> KH // ED (3)
(1)(2)(3) => I;K;H;R thẳng hàng (tiên đề Ơclit)
a) xét tam giác ABD và tam giác AHF có
góc BAD chung
Góc AFH = góc ADB (=90 độ)
=> tam giác ABD đồng dạng vs tam giác AHF (g.g)
=> AB/AD = AH/AF
=> AF.AD = AH.AD
b) xét tam giác AFC và tam giác AEB có
Góc A chung
Góc AFC = góc AEB (=90 độ)
=> tam giác AFC đồng vs tam giác AEB (g.g)
=> AF/AC = AE/AB
=> AF.AB= AE.AC
a: Xét ΔABD vuông tại D và ΔAHF vuông tại F có
góc FAH chung
=>ΔABD đồng dạng với ΔAHF
=>AB/AH=AD/AF
=>AB*AF=AH*AD
b: Xet ΔAEB vuông tại E và ΔAFC vuông tại F có
góc EAB chung
=>ΔAEB đồng dạng với ΔAFC
=>AE/AF=AB/AC
=>AE*AC=AB*AF
=>AE/AB=AF/AC
=>ΔAEF đồng dạng với ΔABC
c:góc FEC=góc DAC
góc DFC=góc EBC
mà góc DAC=góc EBC
nên góc FEC=goc DFC
=>FC là phân giác của góc EFD