K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 9 2016

mik thik mark tuan nek

12 tháng 9 2016

bài này khó quá

khó

khó

12 tháng 6 2015

Do 0 < a,b,c < 1 nên  (a - 1)(b - 1)(c - 1) < 0

hay abc < ab + bc + ca - (a + b + c) + 1 = ab + bc + ca - 1

suy ra:a+ b+ c+ 2abc < a+ b+ c2 + 2(ab + bc + ca - 1) = (a + b + c)- 2 = 2- 2 = 2

11 tháng 6 2015

a, b, c là độ dài 3 cạnh của tgiác nên ta có: b+c > a => ab+ac > a²

 tương tự: bc+ab > b²; ca+bc > c²  

cộng lại: 2ab+2bc+2ca > a²+b²+c² (*)  

g thiết: 4 = (a+b+c)² = a²+b²+c² + 2ab+2bc+2ca > a²+b²+c² + a²+b²+c² {ad (*)}  

=> 2 > a²+b²+c² (đpcm) 

10 tháng 2 2018

a^2+b^2+c^2+2abc<2

13 tháng 9 2019

a,b,c là độ dài 3 cạnh của một tam giác nên a < b + c

\(\Leftrightarrow2a< a+b+c\Leftrightarrow2a< 2\Leftrightarrow a< 1\)

Chứng minh tương tự: b < 1; c < 1

\(\Rightarrow\hept{\begin{cases}1-a>0\\1-b>0\\1-c>0\end{cases}}\Leftrightarrow\left(1-a\right)\left(1-b\right)\left(1-c\right)>0\)

\(\Leftrightarrow1-c-b+bc-a+ac+ab-abc>0\)

\(\Leftrightarrow1-\left(a+b+c\right)+ab+bc+ac>abc\)

\(\Leftrightarrow1-2+ab+bc+ac>abc\)

\(\Leftrightarrow abc< -1+ab+bc+ac\)

\(\Leftrightarrow2abc< -2+2ab+2bc+2ac\)

\(\Leftrightarrow a^2+b^2+c^2+2abc< -2+2ab+2bc+2ac+a^2+b^2+c^2\)

\(\Leftrightarrow a^2+b^2+c^2+2abc< \left(a+b+c\right)^2-2\)

\(\Leftrightarrow a^2+b^2+c^2+2abc< 2^2-2\)

\(\Leftrightarrow a^2+b^2+c^2+2abc< 2\left(đpcm\right)\)

20 tháng 8 2016

Theo bđt tam giác, ta có : \(\begin{cases}a+b>c\\b+c>a\\a+c>b\end{cases}\) \(\Leftrightarrow\begin{cases}bc+ac>c^2\\ab+ac>a^2\\ab+bc>b^2\end{cases}\)

\(\Rightarrow a^2+b^2+c^2< 2\left(ab+bc+ac\right)\) 

\(\Leftrightarrow2\left(a^2+b^2+c^2\right)< a^2+b^2+c^2+2\left(ab+bc+ac\right)\)

\(\Leftrightarrow2\left(a^2+b^2+c^2\right)< \left(a+b+c\right)^2\)

\(\Leftrightarrow2\left(a^2+b^2+c^2\right)< 1\)

\(\Leftrightarrow a^2+b^2+c^2< \frac{1}{2}\)

7 tháng 5 2015

Nhận xét : \(\frac{a}{b+c}>\frac{a}{a+b+c}\)

               \(\frac{b}{a+c}>\frac{b}{a+b+c}\)

                \(\frac{c}{a+b}>\frac{c}{a+b+c}\)

Cộng từng vế => \(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=\frac{a+b+c}{a+b+c}=1\)(1)

+) Lại có: a;b; c là 3 cạnh của tam giác nên a < b+ c; b < a+ c; c< a+ b

=> \(\frac{a}{b+c}<1;\frac{b}{c+a}<1;\frac{c}{b+a}<1\)

\(\frac{a}{b+c}<1\Rightarrow\frac{a}{b+c}<\frac{a+a}{b+c+a}=\frac{2a}{a+b+c}\)

tương tự, \(\frac{b}{c+a}<\frac{2b}{a+b+c};\frac{c}{a+b}<\frac{2c}{a+b+c}\)

=> \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}<\frac{2a}{a+b+c}+\frac{2b}{a+b+c}+\frac{2c}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+c}=2\) (2)

Từ (1)(2) => đpcm

8 tháng 5 2022

Cho a b c là độ dài dài ba cạnh của một tam giác chứng mình rằng a/b+c+b/c+a+c/a+b