Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1)
Vì \(a,b,c\) là ba cạnh của tam giác nên :
\(a+b-c,b+c-a,c+a-b>0\)
Đặt \((a+b-c,b+c-a,c+a-b)=(x,y,z)\Rightarrow (a,b,c)=\left(\frac{x+z}{2},\frac{x+y}{2},\frac{y+z}{2}\right)\)
BĐT cần CM tương đương:
\((x+y)(y+z)(x+z)\geq 8xyz\) với \(x,y,z>0\)
Áp dụng BĐT AM-GM ta có:
\((x+y)(y+z)(x+z)\geq 2\sqrt{xy}.2\sqrt{yz}.2\sqrt{xz}=8xyz\) (đpcm)
Dấu bằng xảy ra khi \(x=y=z\Leftrightarrow a=b=c\)
Bài 2)
Để đề bài chặt chẽ phải bổ sung điều kiện \(a,b,c>0\)
\((a^2+b^2+c^2)^2>2(a^4+b^4+c^4) \Leftrightarrow 2(a^2b^2+b^2c^2+c^2a^2) >a^4+b^4+c^4\)
\(\Leftrightarrow 4a^2b^2>(c^2-a^2-b^2)^2\Leftrightarrow (2ab+a^2+b^2-c^2)(2ab-a^2-b^2+c^2)>0\)
\(\Leftrightarrow [(a+b)^2-c^2][c^2-(a-b)^2]>0\)
\(\Leftrightarrow (a+b-c)(a+b+c)(c+b-a)(c+a-b)>0\)
\(\Leftrightarrow (a+b-c)(b+c-a)(c+a-b)>0\). Khi đó xảy ra các TH:
+) Cả ba nhân tử \(a+b-c,b+c-a,c+a-b>0\) đồng nghĩa với \(a,b,c\) là ba cạnh tam giác
+ ) Tồn tại một nhân tử nhỏ hơn $0$ sẽ kéo theo bắt buộc phải có thêm một nhân tử nhỏ hơn $0$ nữa. Giả sử \(\left\{\begin{matrix} a+b-c<0\\ b+c-a<0\end{matrix}\right.\Rightarrow 2b < 0\) (vô lý)
Vậy ta có đpcm
Cho a,b,c là độ dài ba cạnh của 1 tam giác. Chứng minh rằng: 4b2c2-(b2+c2-a2)2 luôn luôn thuộc dương
2.
a, Có : (a+b+c).(1/a+1/b+1/c)
>= \(3\sqrt[3]{abc}.3\sqrt[3]{\frac{1}{abc}}\)
= 9
=> ĐPCM
Dấu "=" xảy ra <=> a=b=c > 0
2.
b, Xét : 2(a+b+c).(1/a+b + 1/b+c + 1/c+a) >= 9 ( theo bđt ở câu a đã c/m )
<=> (a+b+c).(1/a+b + 1/b+c + 1/c+a) >= 9/2
<=> a/b+c + b/c+a + c/a+b + 3 >= 9/2
<=> a/b+c + b/c+a + c/a+b >= 9/3 - 3 = 3/2
=> ĐPCM
Dấu "=" xảy ra <=> a=b=c > 0
1) 2( a2 + b2 ) ≥ ( a + b)2
<=> 2a2 + 2b2 - a2 - 2ab - b2 ≥ 0
<=> a2 - 2ab + b2 ≥ 0
<=> ( a - b )2 ≥ 0 ( luôn đúng )
=> đpcm
2) Áp dụng BĐT Cô-si cho 2 số dương x , y , ta có :
a + b ≥ \(2\sqrt{ab}\)
=> \(\dfrac{1}{x}+\dfrac{1}{y}\) ≥ 2\(\sqrt{\dfrac{1}{x}.\dfrac{1}{y}}\)
=> ( x + y)( \(\dfrac{1}{x}+\dfrac{1}{y}\) ) ≥ \(2\sqrt{xy}\)2\(\sqrt{\dfrac{1}{x}.\dfrac{1}{y}}\)
=> ( x + y)( \(\dfrac{1}{x}+\dfrac{1}{y}\)) ≥ 4
=> \(\dfrac{1}{x}+\dfrac{1}{y}\) ≥ \(\dfrac{4}{x+y}\)
1a)\(\dfrac{a^2+b^2}{2}\ge\dfrac{\left(a+b\right)^2}{4}\)
\(\Leftrightarrow2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)
\(\Leftrightarrow a^2-2ab+b^2\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\)(luôn đúng)
b)\(\dfrac{a^2+b^2+c^2}{3}\ge\dfrac{\left(a+b+c\right)^2}{9}\)
\(\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2ac-2bc\ge0\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)(luôn đúng)
2a)\(a^2+\dfrac{b^2}{4}\ge ab\)
\(\Leftrightarrow a^2-ab+\dfrac{b^2}{4}\ge0\)
\(\Leftrightarrow a^2-2\cdot\dfrac{1}{2}b\cdot a+\left(\dfrac{1}{2}b\right)^2\ge0\)
\(\Leftrightarrow\left(a-\dfrac{1}{2}b\right)^2\ge0\)(luôn đúng)
b)Đã cm
c)\(a^2+b^2+1\ge ab+a+b\)
\(\Leftrightarrow2a^2+2b^2+2\ge2ab+2a+2b\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(a^2-2a+1\right)+\left(b^2-2b+1\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(a-1\right)^2+\left(b-1\right)^2\ge0\)(luôn đúng)
Dấu bằng xảy ra khi a=b=1
Mashiro Shiina, giúp mình giải câu này nhé, mình sắp làm bài kiểm tra rùi.
1, \(a^3+b^3+3ab\left(a^2+b^2\right)+6a^2b^2\left(a+b\right)\)
\(=a^3+b^3+3a^3b+3ab^3+6a^2b^2\)
\(=\left(a+b\right)\left(a^2-ab+b^2\right)+3ab\left(a^2+2ab+b^2\right)\)
\(=a^2-ab+b^2+3ab\left(a+b\right)^2\)
\(=a^2-ab+b^2+3ab\)
\(=a^2+2ab+b^2=\left(a+b\right)^2\)
\(=1\)
Vậy A = 1
Bài 2: ( đặt đề bài là A )
Đặt \(b+c-a=x,a+c-b=y,a+b-c=z\)
\(\Rightarrow a+b+c=x+y+z\)
\(\Leftrightarrow A=\left(x+y+z\right)^3-x^3-y^3-z^3\)
\(=x^3+y^3+z^3+3\left(x+y\right)\left(y+z\right)\left(x+z\right)-x^3-y^3-z^3\)
\(=3\left(x+y\right)\left(y+z\right)\left(x+z\right)\)
\(=3.2c.2a.2b=24abc\)
Vậy...
Bài 3:
+) Xét p = 3 có: \(p^2+2=11\in P\) ( t/m )
+) Xét \(p\ne3\) thì:
+ \(p=3k+1\Rightarrow p^2+2=\left(3k+1\right)^2+2=9k^2+6k+3⋮3\notin P\)
+ \(p=3k+2\Rightarrow p^2+2=\left(3k+2\right)^2+2=9k^2+12k+6⋮3\notin P\)
Vậy p = 3
Bài 4:
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=2\)
\(\Leftrightarrow\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2=4\)
\(\Leftrightarrow\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+\dfrac{2}{ab}+\dfrac{2}{bc}+\dfrac{2}{ac}=4\)
\(\Leftrightarrow\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+\dfrac{2c}{abc}+\dfrac{2a}{abc}+\dfrac{2b}{abc}=4\)
\(\Leftrightarrow\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+\dfrac{2\left(a+b+c\right)}{abc}=4\)
\(\Leftrightarrow\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+2=4\)
\(\Leftrightarrow\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}=2\)
\(\Rightarrowđpcm\)
Tham khảo:
https://hoc24.vn/cau-hoi/cho-a-b-c-la-do-dai-ba-canh-cua-mot-tam-giac-va-thoa-man-he-thuc-a-b-c-1-cmr-a2-b2-c2-12.139261258302
áp dụng Hê rông nha mn❤