Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lần sau ghi dấu ra xíu nhé :v
a) Đặt \(\sqrt{x}=a\Rightarrow B=\left(\dfrac{a}{a+4}+\dfrac{4}{a-4}\right):\dfrac{a^2+16}{a+2}\)
Quy đồng,rút gọn : \(B=\dfrac{a+2}{a^2-16}\Rightarrow B=\dfrac{\sqrt{x}+2}{x-16}\)
b) \(B\left(A-1\right)=\dfrac{\sqrt{x}+2}{x-16}\left(\dfrac{\sqrt{x}+4}{\sqrt{x}+2}-1\right)=\dfrac{2}{x-16}\)
x - 16 là ước của 2 => \(x\in\left\{14;15;17;18\right\}\)
mới làm quen toán 9 ;v có gì k rõ ae chỉ bảo nhé :))
a. ĐKXĐ : x>1.
b. \(A=\left(\dfrac{4}{x-\sqrt{x}}+\dfrac{\sqrt{x}}{\sqrt{x}-1}\right):\dfrac{1}{\sqrt{x}-1}=\left[\dfrac{4}{\sqrt{x}\left(\sqrt{x}-1\right)}+\dfrac{\sqrt{x}}{\sqrt{x}-1}\right].\left(\sqrt{x}-1\right)=\dfrac{4+\sqrt{x}.\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}.\left(\sqrt{x}-1\right)=\dfrac{4+x}{\sqrt{x}}\)
c. Thay \(x=4-2\sqrt{3}\) vào A, ta có:
\(A=\dfrac{4+4-2\sqrt{3}}{\sqrt{4-2\sqrt{3}}}=\dfrac{8-2\sqrt{3}}{\sqrt{\left(\sqrt{3}-1\right)^2}}=\dfrac{8-2\sqrt{3}}{\sqrt{3}-1}=\dfrac{\left(8-2\sqrt{3}\right)\left(\sqrt{3}+1\right)}{3-1}=\dfrac{8\sqrt{3}+8-6-2\sqrt{3}}{2}=\dfrac{2+6\sqrt{3}}{2}=\dfrac{2\left(1+3\sqrt{3}\right)}{2}=1+3\sqrt{3}\)
Vậy giá trị của A tại \(x=4-2\sqrt{3}\) là \(1+3\sqrt{3}\).
\(T=\frac{19}{ab}+\frac{6}{a^2+b^2}+2011\left(a^4+b^4\right)\)
\(=\frac{19}{ab}+\frac{6}{a^2+b^2}+304\left(a^4+b^4+\frac{1}{16}+\frac{1}{16}\right)+48\left(a^4+\frac{1}{16}\right)+48\left(b^4+\frac{1}{16}\right)+1659\left(a^4+b^4\right)-44\)
\(\ge\frac{19}{ab}+\frac{6}{a^2+b^2}+304ab+24\left(a^2+b^2\right)+1659.\frac{\left(\frac{\left(a+b\right)^2}{2}\right)^2}{2}-44\)
\(=\left(\frac{19}{ab}+304ab\right)+\left(\frac{6}{a^2+b^2}+24\left(a^2+b^2\right)\right)+\frac{1307}{8}\)
\(\ge152+24+\frac{1307}{8}=\frac{2715}{8}\)
Ta có:\(P=a^2+\frac{1}{a^2}+b^2+\frac{1}{b^2}+c^2+\frac{1}{c^2}\)
\(\Rightarrow P\ge a^2+b^2+c^2+\frac{9}{a^2+b^2+c^2}\)(bđt cauchy-schwarz)
\(P\ge\frac{a^2+b^2+c^2}{81}+\frac{9}{a^2+b^2+c^2}+\frac{80\left(a^2+b^2+c^2\right)}{81}\)
\(\Rightarrow P\ge\frac{2}{3}+\frac{80\left(a^2+b^2+c^2\right)}{81}\left(AM-GM\right)\)
Sử dụng đánh giá quen thuộc:\(a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}=27\)
\(\Rightarrow P\ge\frac{2}{3}+\frac{80\cdot27}{81}=\frac{82}{3}\)
"="<=>a=b=c=3
Áp dụng bđt : (x+y)^2 < = 2.(x^2+y^2) thì :
(a+b)^2 < = 2.(a^2+b^2) = 2 . 2 = 4
=> a+b < = 2
Áp dụng bđt cosi ta có : 2a.b < = a^2+b^2 = 2
<=> a.b < = 1
Có :
P = \(\sqrt{ab}\). ( \(\sqrt{a.\left(a+8\right)}+\sqrt{b.\left(b+8\right)}\))
< = 1 . \(\frac{\sqrt{9a.\left(a+8\right)}+\sqrt{9b.\left(b+8\right)}}{3}\)
Áp dụng bđt : x.y < = (x+y)^2/4 thì :
P < = \(\frac{9a+a+8+9b+b+8}{2.3}\)
= \(\frac{10.\left(a+b\right)+16}{6}\)
< = \(\frac{10.2+16}{6}\)= 6
Dấu "=" xảy ra <=> a=b=1
Vậy ..............
Tk mk nha
b \(P=\dfrac{\sqrt{x}+\sqrt{x}+2}{x-4}\cdot\dfrac{\sqrt{x}-2}{2}=\dfrac{\sqrt{x}+1}{\sqrt{x}+2}\)
a: Khi x=64 thì \(P=\dfrac{8+1}{8+2}=\dfrac{9}{10}\)
b: \(P=\dfrac{\sqrt{x}+\sqrt{x}+2}{x-4}\cdot\dfrac{\sqrt{x}-2}{2}=\dfrac{\sqrt{x}+1}{\sqrt{x}+2}\)
a: Khi x=64 thì \(P=\dfrac{8+1}{8+2}=\dfrac{9}{10}\)
Áp dungj BĐT min-côp-xki, ta có \(\sqrt{1+a^4}+\sqrt{1+b^4}\ge\sqrt{\left(1+1\right)^2+\left(a^2+b^2\right)^2}=\sqrt{4+\left(a^2+b^2\right)^2}\)
Mà \(\left(a+2\right)\left(b+2\right)=\frac{25}{4}\Rightarrow ab+2a+2b=\frac{9}{4}\)
Mà \(a^2+b^2\ge2ab;4a^2+1\ge4a;4b^2+1\ge4b\Rightarrow5\left(a^2+b^2\right)+2\ge\frac{9}{2}\)
=> \(a^2+b^2\ge\frac{1}{2}\)
=> \(F\ge\sqrt{4+\frac{1}{4}}=\frac{\sqrt{17}}{2}\)
Dấu = xảy ra <=> a=b=1/2
^_^