Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\)
áp dụng bunhia - cốpxki
\(P^2=\left(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\right)^2\le\left(1+1+1\right)\left(a+b+b+c+c+a\right)\)
\(=6\left(a+b+c\right)\)
\(=6.2021=12126< =>P=\sqrt{12126}\)
vậy MAX P=\(\sqrt{12126}\)
\(P=\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\)
\(\Rightarrow P^2=\left(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\right)^2\)
Áp dụng BĐT Bunyakovsky ta có:
\(P^2\le\left(1^2+1^2+1^2\right)\left(a+b+b+c+c+a\right)=6\left(a+b+c\right)=6\cdot2021\)
\(\Rightarrow P\le\sqrt{6\cdot2021}=\sqrt{12126}\)
Dấu "=" xảy ra khi: \(a=b=c=\frac{2021}{3}\)
Vậy \(Max\left(P\right)=\sqrt{12126}\Leftrightarrow a=b=c=\frac{2021}{3}\)
Đặt \(x=\sqrt{a^2+b^2+c^2}\)
Có: \(x=\sqrt{a^2+b^2+c^2}\ge\sqrt{\frac{1}{3}\left(a+b+c\right)^2}=\sqrt{3}\)
\(x=\sqrt{a^2+b^2+c^2}=\sqrt{\left(a+b+c\right)^2-2\left(ab+bc+ca\right)}\le\sqrt{\left(a+b+c\right)^2}=3\)
\(\Rightarrow\sqrt{3}\le x\le3\)
Khi đó, có: \(P=\sqrt{a^2+b^2+c^2}+\frac{1}{a^2+b^2+c^2}=x+\frac{1}{x^2}\)
Ta chứng minh \(P=x+\frac{1}{x^2}\le\frac{28}{9}\)
BĐT \(\Leftrightarrow9x^3-28x^2+9\le0\)
\(\Leftrightarrow\left(x-3\right)\left(9x^2-x-3\right)\le0\)(Luôn đúng vì \(\sqrt{3}\le x\le3\))
Vậy \(maxP=\frac{28}{9}\Leftrightarrow x=3\Leftrightarrow\left(a,b,c\right)\in\left\{\left(0;0;3\right)\right\}\)và các hoán vị.
\(Q\le\sqrt{3\left(a+b+b+c+c+a\right)}=\sqrt{6\left(a+b+c\right)}\le\sqrt{6.\sqrt{3\left(a^2+b^2+c^2\right)}}=\sqrt{6\sqrt{3}}\)
Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{\sqrt{3}}\)
Lại có:
\(a^2+b^2+c^2\le1\Rightarrow0\le a;b;c\le1\)
\(\Leftrightarrow a\left(a-1\right)+b\left(b-1\right)+c\left(c-1\right)\le0\)
\(\Leftrightarrow a+b+c\ge a^2+b^2+c^2=1\)
Do đó:
\(Q^2=2\left(a+b+c\right)+2\sqrt{a^2+ab+bc+ca}+2\sqrt{b^2+ab+bc+ca}+2\sqrt{c^2+ab+bc+ca}\)
\(Q^2\ge2\left(a+b+c\right)+2\sqrt{a^2}+2\sqrt{b^2}+2\sqrt{c^2}\)
\(Q^2\ge4\left(a+b+c\right)\ge4\)
\(\Rightarrow Q\ge2\)
Dấu "=" xảy ra khi \(\left(a;b;c\right)=\left(0;0;1\right)\) và hoán vị
Lời giải:
Đặt $\sqrt{4-a^2}=x; \sqrt{4-b^2}=y; \sqrt{4-c^2}=z$ thì bài toán trở thành:
Cho $x,y,z\in [0;2]$ thỏa mãn $x^2+y^2+z^2=6$. Tìm min: $P=x+y+z$
-------------------
Ta có: $P^2=x^2+y^2+z^2+2(xy+yz+xz)=6+2(xy+yz+xz)$
Vì $x,y,z\in [0;2]$ nên:
$(x-2)(y-2)(z-2)\leq 0\Leftrightarrow 2(xy+yz+xz)\geq xyz+4(x+y+z)-8\geq 4(x+y+z)-8=4P-8$
Vậy $P^2=6+2(xy+yz+xz)\geq 6+4P-8$
$\Leftrightarrow P^2-4P+2\geq 0$
$\Leftrightarrow (P-2)^2\geq 2\Rightarrow P\geq 2+\sqrt{2}$.
Vậy $P_{\min}=2+\sqrt{2}$.
Dấu "=" xảy ra khi $(a,b,c)=(0,2,\sqrt{2})$ và hoán vị
Đề thi học kỳ 1 trường Ams
**Min
Từ \(a^2+b^2+c^2=1\Rightarrow a^2\le1;b^2\le1;c^2\le1\)
\(\Rightarrow a\le1;b\le1;c\le1\Rightarrow a^2\le a;b^2\le b;c^2\le c\)
Khi đó:
\(\sqrt{a+b^2}\ge\sqrt{a^2+b^2};\sqrt{b+c^2}\ge\sqrt{b^2+c^2};\sqrt{c+a^2}\ge\sqrt{c^2+a^2}\)
\(\Rightarrow P\ge\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}\)
\(\Rightarrow P\ge\sqrt{1-c^2}+\sqrt{1-a^2}+\sqrt{1-b^2}\)
Ta có:
\(\sqrt{1-c^2}\ge1-c^2\Leftrightarrow1-c^2\ge1-2c^2+c^4\Leftrightarrow c^2\left(1-c^2\right)\ge0\left(true!!!\right)\)
Tương tự cộng lại:
\(P\ge3-\left(a^2+b^2+c^2\right)=2\)
dấu "=" xảy ra tại \(a=b=0;c=1\) and hoán vị.
**Max
Có BĐT phụ sau:\(\sqrt{a}+\sqrt{b}+\sqrt{c}\le\sqrt{3\left(a+b+c\right)}\left(ezprove\right)\)
Áp dụng:
\(\sqrt{a+b^2}+\sqrt{b+c^2}+\sqrt{c+a^2}\)
\(\le\sqrt{3\left(a+b+c+a^2+b^2+c^2\right)}\)
\(=\sqrt{3\left(a+b+c\right)+3}\)
\(\le\sqrt{3\left(\sqrt{3\left(a^2+b^2+c^2\right)}+3\right)}=\sqrt{3\cdot\sqrt{3}+3}\)
Dấu "=" xảy ra tại \(a=b=c=\pm\frac{1}{\sqrt{3}}\)