K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 11 2019

1)

Chương 4: BẤT ĐẲNG THỨC, BẤT PHƯƠNG TRÌNH

NV
18 tháng 11 2019

Nhìn BĐT 4 số ngán quá

\(1\ge4\sqrt[4]{\frac{1}{a^2b^2c^2d^2}}\Rightarrow abcd\ge16\)

\(\Rightarrow VT=\frac{abcd}{8}+2\ge4\) (1)

\(VP=\frac{a+c}{\sqrt{ac}}+\frac{b+d}{\sqrt{bd}}\le\frac{2\left(a+c\right)}{a+c}+\frac{2\left(b+d\right)}{b+d}=4\) (2)

(1);(2) \(\Rightarrow\) đpcm

Dấu "=" xảy ra khi \(a=b=c=d=2\)

18 tháng 11 2019

Nguyễn Việt Lâm dòng 4 có phải ngược dấu không ạ?

\(VP=\frac{a+c}{\sqrt{ac}}+\frac{b+d}{\sqrt{bd}}\ge\frac{2\left(a+c\right)}{a+c}+\frac{2\left(b+d\right)}{b+d}\) chứ (Theo AM-GM)

\(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\ge\frac{1}{2\sqrt{2}}\left(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}\right)\)

\(\Leftrightarrow\sqrt{2}\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\ge\frac{1}{2\sqrt{2}}\left(\sqrt{2}.\sqrt{a^2+b^2}+\sqrt{2}.\sqrt{b^2+c^2}+\sqrt{2}.\sqrt{c^2+a^2}\right)\)

\(VT\ge\sqrt{2}.\frac{9}{2\left(a+b+c\right)}\ge\sqrt{2}.\frac{9}{2\sqrt{3\left(a^2+b^2+c^2\right)}}=\frac{3\sqrt{2}}{2}\left(1\right)\)

\(VP\le\frac{1}{2\sqrt{2}}.\frac{2\left(a^2+b^2+c^2\right)+6}{2}=\frac{3\sqrt{2}}{2}\left(2\right)\)

Từ (1) và (2) \(\Rightarrow VT\ge VP\)

Dấu \("="\) xảy ra khi \(a=b=c=1\)

1 tháng 1 2020

Akai Haruma dạ giúp em bài này vs ạ ...!!!

NV
30 tháng 12 2020

1. Đề thiếu

2. BĐT cần chứng minh tương đương:

\(a^4+b^4+c^4\ge abc\left(a+b+c\right)\)

Ta có:

\(a^4+b^4+c^4\ge\dfrac{1}{3}\left(a^2+b^2+c^2\right)^2\ge\dfrac{1}{3}\left(ab+bc+ca\right)^2\ge\dfrac{1}{3}.3abc\left(a+b+c\right)\) (đpcm)

3.

Ta có:

\(\left(a^6+b^6+1\right)\left(1+1+1\right)\ge\left(a^3+b^3+1\right)^2\)

\(\Rightarrow VT\ge\dfrac{1}{\sqrt{3}}\left(a^3+b^3+1+b^3+c^3+1+c^3+a^3+1\right)\)

\(VT\ge\sqrt{3}+\dfrac{2}{\sqrt{3}}\left(a^3+b^3+c^3\right)\)

Lại có:

\(a^3+b^3+1\ge3ab\) ; \(b^3+c^3+1\ge3bc\) ; \(c^3+a^3+1\ge3ca\)

\(\Rightarrow2\left(a^3+b^3+c^3\right)+3\ge3\left(ab+bc+ca\right)=9\)

\(\Rightarrow a^3+b^3+c^3\ge3\)

\(\Rightarrow VT\ge\sqrt{3}+\dfrac{6}{\sqrt{3}}=3\sqrt{3}\)

NV
30 tháng 12 2020

4.

Ta có:

\(a^3+1+1\ge3a\) ; \(b^3+1+1\ge3b\) ; \(c^3+1+1\ge3c\)

\(\Rightarrow a^3+b^3+c^3+6\ge3\left(a+b+c\right)=9\)

\(\Rightarrow a^3+b^3+c^3\ge3\)

5.

Ta có:

\(\dfrac{a}{b}+\dfrac{b}{c}\ge2\sqrt{\dfrac{a}{c}}\) ; \(\dfrac{a}{b}+\dfrac{c}{a}\ge2\sqrt{\dfrac{c}{b}}\) ; \(\dfrac{b}{c}+\dfrac{c}{a}\ge2\sqrt{\dfrac{b}{a}}\)

\(\Rightarrow\sqrt{\dfrac{b}{a}}+\sqrt{\dfrac{c}{b}}+\sqrt{\dfrac{a}{c}}\le\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}=1\)

AH
Akai Haruma
Giáo viên
31 tháng 7 2020

Lời giải:

Áp dụng BĐT Bunhiacopkxy:

$(a^3+1)(a+1)\geq (a^2+1)^2\Rightarrow a^3+1\geq \frac{(a^2+1)^2}{a+1}; a+1\leq \sqrt{2(a^2+1)}$

$\Rightarrow \frac{a^3+1}{b\sqrt{a^2+1}}\geq \frac{\sqrt{(a^2+1)^3}}{b(a+1)}\geq \frac{a^2+1}{\sqrt{2}b}$

Hoàn toàn tương tự với các phân thức còn lại và cộng theo vế suy ra:

$\text{VT}\geq \frac{a^2+1}{\sqrt{2}b}+\frac{b^2+1}{\sqrt{2}c}+\frac{c^2+1}{\sqrt{2}a}$

Bài toán sẽ được chứng minh khi ta chỉ ra được: $\frac{a^2+1}{\sqrt{2}b}+\frac{b^2+1}{\sqrt{2}c}+\frac{c^2+1}{\sqrt{2}a}\geq \sqrt{2}(a+b+c)$

$\Leftrightarrow \frac{a^2+1}{b}+\frac{b^2+1}{c}+\frac{c^2+1}{a}\geq 2(a+b+c)$

$\Leftrightarrow ab^3+bc^3+ca^3+ab+bc+ac\geq 2abc(a+b+c)(*)$

Thật vậy, theo BĐT AM-GM:

$ab^3+bc+a^2b^2c^2\geq 3ab^2c$. Tương tự với $bc^3+ca+a^2b^2c^2\geq 3abc^2; ca^3+ab+a^2b^2c^2\geq 3a^2bc$

Cộng theo vế và thu gọn:

$ab^3+bc^3+ca^3+ab+bc+ac\geq 3abc(a+b+c-abc)(1)$

Mà: $(a+b+c)^3\geq 27abc\geq 27(abc)^3$ (do $abc\leq 1$) nên $a+b+c\geq 3abc(2)$

Từ $(1); (2)\Rightarrow ab^3+bc^3+ca^3+ab+bc+ac\geq 2abc(a+b+c)$. BĐT $(*)$ được chứng minh.

Bài toán hoàn tất.

20 tháng 10 2019

@Nk>↑@ Vũ Minh Tuấn Băng Băng 2k6 Nguyễn Văn Đạt tth Lê Tài Bảo Châu Aki Tsuki Lê Thị Thục Hiền Nguyễn Thị Diễm Quỳnh HISINOMA KINIMADO

Giúp em vs mn ơi khocroi

20 tháng 10 2019

xin lỗi cơ mà em không làm được bài lớp 10 ạ :(

1 tháng 12 2019

bạn viết sai đề rồi nhé đề đúng là căn(b^2+1/c^2) và căn (c^2 + 1/a^2) ở vế trái chứ ?

Áp dụng BĐT Cô - si, ta có :

\(\left(1.a+\frac{9}{4}.\frac{1}{b}\right)^2\le\left(1^2+\frac{81}{16}\right)\left(a^2+\frac{1}{b^2}\right)\)

\(\Rightarrow\sqrt{a^2+\frac{1}{b^2}}\ge\frac{4}{\sqrt{97}}\left(a+\frac{9}{4b}\right)\).Chứng minh tương tự, ta có:

\(\sqrt{b^2+\frac{1}{c^2}}\ge\frac{4}{\sqrt{97}}\left(b+\frac{9}{4c}\right)\)

\(\sqrt{c^2+\frac{1}{a^2}}\ge\frac{4}{\sqrt{97}}\left(c+\frac{4}{9a}\right)\)

Cộng 3 vế BĐT => đpcm

31 tháng 10 2019

Em nghĩ cần thêm đk a, b, c là các số thực dương

Đặt \(\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)=\left(x;y;z\right)\) thì x + y + z = 3; x > 0,y>0,z>0

BĐT \(\Leftrightarrow\sqrt{\frac{5}{x}+4}+\sqrt{\frac{5}{y}+4}+\sqrt{\frac{5}{z}+4}\le3\sqrt{3\left(\frac{xy+yz+zx}{xyz}\right)}\)

\(\Leftrightarrow\sqrt{5yz+4xyz}+\sqrt{5zx+4xyz}+\sqrt{5z+4xyz}\le3\sqrt{3\left(xy+yz+zx\right)}\)(*)

\(VT\le\sqrt{5\left(xy+yz+zx\right)+12xyz+2\Sigma_{cyc}\sqrt{\left(5yz+4xyz\right)\left(5zx+4xyz\right)}}\)

\(\le\sqrt{15\left(xy+yz+zx\right)+36xyz}\)(áp dụng BĐT AM-GM)

Chú ý rằng: \(xyz\le\frac{\left(xy+yz+zx\right)\left(x+y+z\right)}{9}\)

Từ đó \(VT\le\sqrt{15\left(xy+yz+zx\right)+4\left(xy+yz+zx\right)\left(x+y+z\right)}\)

\(=3\sqrt{3\left(xy+yz+zx\right)}=VP_{\text{(*)}}\)

Ta có đpcm.

Đẳng thức xảy ra khi a = b = c = 1

Is that true?

31 tháng 10 2019

ấy nhầm, cái dòng thứ 5 là VT =.... nha!