K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
19 tháng 6 2019

Bạn khai triển \(xy+yz+zx\) và rút gọn là sẽ xong bài toán, kết quả hình như ra \(-1\)

Việc khai triển tính toán là rất đơn giản nhưng khá dài dòng và cần kiên nhẫn nên nhường bạn tự làm :D

Khi ấy ta có \(x^2+y^2+z^2-2+2=\left(x+y+z\right)^2+2\ge2\)

AH
Akai Haruma
Giáo viên
28 tháng 2 2020

Bài 1:

Ta có:

\(x^2+xy+y^2=\frac{3}{4}(x^2+2xy+y^2)+\frac{1}{4}(x^2-2xy+y^2)\)

\(=\frac{3}{4}(x+y)^2+\frac{1}{4}(x-y)^2\geq \frac{3}{4}(x+y)^2\)

\(\Rightarrow \sqrt{x^2+xy+y^2}\geq \frac{\sqrt{3}(x+y)}{2}\)

Hoàn toàn tương tự:

\(\sqrt{y^2+yz+z^2}\geq \frac{\sqrt{3}(y+z)}{2}; \sqrt{z^2+xz+x^2}\geq \frac{\sqrt{3}(x+z)}{2}\)

Cộng theo vế các BĐT trên:

\(\Rightarrow \sqrt{x^2+xy+y^2}+\sqrt{y^2+yz+z^2}+\sqrt{z^2+xz+x^2}\geq \sqrt{3}(x+y+z)\)

Ta có đpcm.

Dấu "=" xảy ra khi $x=y=z$

AH
Akai Haruma
Giáo viên
28 tháng 2 2020

Bài 2:

BĐT cần chứng minh tương đương với:

$4(a^9+b^9)-(a+b)(a^3+b^3)(a^5+b^5)\geq 0$

$\Leftrightarrow 4(a+b)(a^8-a^7b+a^6b^2-a^5b^3+a^4b^4-a^3b^5+a^2b^6-ab^7+b^8)-(a+b)(a^8+a^3b^5+a^5b^3+b^8)\geq 0$

$\Leftrightarrow 4(a^8-a^7b+a^6b^2-a^5b^3+a^4b^4-a^3b^5+a^2b^6-ab^7+b^8)-(a^8+a^3b^5+a^5b^3+b^8)\geq 0$

$\Leftrightarrow 3a^8+3b^8+4a^6b^2+4a^2b^6+4a^4b^4-(4a^7b+4ab^7+5a^5b^3+5a^3b^5)\geq 0$

$\Leftrightarrow (a-b)^2(a^2-ab+b^2)(3a^4+5a^3b+7a^2b^2+5ab^3+3b^4)\geq 0$

BĐT trên luôn đúng vì:

$(a-b)^2\geq 0, \forall a,b$

$a^2-ab+b^2=(a-\frac{b}{2})^2+\frac{3}{4}b^2\geq 0, \forall a,b$

$3a^4+5a^3b+7a^2b^2+5ab^3+3b^4=3(a^4+b^4+2a^2b^2)+a^2b^2+5ab(a^2+b^2)$

$=3(a^2+b^2)^2+5ab(a^2+b^2)+a^2b^2$

$=(a^2+b^2)(3a^2+3b^2+5ab)+a^2b^2=(a^2+b^2)[3(a+\frac{5}{6}b)^2+\frac{11}{12}b^2]+a^2b^2\geq 0$ với mọi $a,b$

Do đó ta có đpcm.

Dấu "=" xảy ra khi $a=b$ hoặc $a+b=0$

29 tháng 1 2020

\(3\left(x^2+y^2+z^2\right)\ge\left(x+y+z\right)^2\\ \Leftrightarrow2x^2+2y^2+2z^2-2xy-2yz-2xz\ge0\\ \Leftrightarrow x^2+y^2+z^2-xy-yz-xz\ge0\)

đây là BĐT cơ bản luôn đúng suy ra đpcm

8 tháng 10 2020

Từ pt ta có: \(-\left(1+x^4\right)=\text{ax}^3+bx^2+cx\)

Áp dụng BĐT B.C.S:

\(\left(1+x^4\right)^2=\left(\text{ax}^3+bx^2+cx\right)^2\le\left(a^2+b^2+c^2\right)\left(x^6+x^4+x^2\right)\)\(\Rightarrow\left(a^2+b^2+c^2\right)\ge\frac{\left(1+x^4\right)^2}{x^6+x^4+x^2}\left(1\right)\)

Mặt khác: \(\frac{\left(1+x^4\right)^2}{x^6+x^4+x^2}\ge\frac{4}{3}\left(2\right)\)

Thật vậy: \(\left(2\right)\Leftrightarrow3\left(1+2x^4+x^8\right)\ge4\left(x^6+x^4+x^2\right)\)

\(\Leftrightarrow3x^8-4x^6+2x^4-4x^2+3\ge0\)

\(\Leftrightarrow\left(x^2-1\right)^2\left(3x^4+2x^2+3\right)\ge0\)(luôn đúng)

Từ 1 và 2 : \(a^2+b^2+c^2\ge\frac{4}{3}\)

Dấu '=' xảy ra khi và chỉ khi \(\orbr{\begin{cases}a=b=c=\frac{2}{3}\left(x=1\right)\\a=b=c=\frac{-2}{3}\left(x=-1\right)\end{cases}}\)

30 tháng 11 2019

Từ giả thiết ta có: \(\left(x+y-z\right)^2=4xy\)

\(\Rightarrow P=x+y+z+\frac{2}{\left(x+y-z\right)^2.z}=x+y+z+\frac{8}{4z\left(x+y-z\right)^2}\)

Am-Gm:\(\left(x+y-z\right)\left(x+y-z\right).4z\le\frac{1}{27}\left(2x+2y+2z\right)^3=\frac{8}{27}\left(x+y+z\right)^3\)

\(\Rightarrow P\ge x+y+z+\frac{27}{\left(x+y+z\right)^3}\)

\(=\frac{x+y+z}{3}+\frac{x+y+z}{3}+\frac{x+y+z}{3}+\frac{27}{\left(x+y+z\right)^3}\ge4\sqrt[4]{\frac{\left(x+y+z\right)^3.27}{27.\left(x+y+z\right)^3}}=4\)

Dấu = xảy ra khi \(\left\{{}\begin{matrix}x+y-z=4z\\x+y+z=3\\\left(x+y-z\right)^2=4xy\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}z=\frac{1}{2}\\x+y=\frac{5}{2}\\xy=1\end{matrix}\right.\)

\(\Rightarrow\left(x;y;z\right)=\left(\frac{1}{2};2;\frac{1}{2}\right)\) hoặc \(\left(2;\frac{1}{2};\frac{1}{2}\right)\). Nhưng vì đề bài cho đối xứng với cả 3 biến nên dấu = xảy ra tại hoán vị của \(\left(2;\frac{1}{2};\frac{1}{2}\right)\)

Vậy P min =4

30 tháng 11 2019

Ngọc HnueThảo PhươngĐỖ CHÍ DŨNGMinh AnBăng Băng 2k6Vũ Minh Tuấn

NV
23 tháng 9 2019

Biến đổi tương đương:

\(\Leftrightarrow a^6+a^5b+ab^5+b^6>a^6+a^4b^2+a^2b^4+b^6\)

\(\Leftrightarrow a^5b-a^4b^2-a^2b^4+ab^5\ge0\)

\(\Leftrightarrow a^4b\left(a-b\right)-ab^4\left(a-b\right)\ge0\)

\(\Leftrightarrow ab\left(a-b\right)\left(a^3-b^3\right)\ge0\)

\(\Leftrightarrow ab\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\) (luôn đúng)

24 tháng 5 2018

Ta có \(\dfrac{a^2}{a+b^2}=a-\dfrac{ab^2}{a+b^2}\ge a-\dfrac{ab^2}{2b\sqrt{a}}=a-\dfrac{ab}{2\sqrt{a}}\)

Thiết lập tương tự và thu lại ta có :

\(VT\ge3-\left(\dfrac{ab}{2\sqrt{a}}+\dfrac{bc}{2\sqrt{b}}+\dfrac{ac}{2\sqrt{c}}\right)\)

Xét \(\dfrac{ab}{2\sqrt{a}}+\dfrac{bc}{2\sqrt{b}}+\dfrac{ac}{2\sqrt{c}}=\sqrt{\dfrac{a^2b^2}{4a}}+\sqrt{\dfrac{b^2c^2}{4b}}+\sqrt{\dfrac{a^2c^2}{4c}}\)

Áp dụng bđt Cauchy ta có \(\sqrt{\dfrac{a^2b^2}{4a}}=\sqrt{\dfrac{ab}{2a}.\dfrac{ab}{2}}\le\dfrac{\dfrac{b}{2}+\dfrac{ab}{2}}{2}\)

Thiết lập tương tự và thu lại ta có :

\(\dfrac{ab}{2\sqrt{a}}+\dfrac{bc}{2\sqrt{b}}+\dfrac{ac}{2\sqrt{c}}\le\dfrac{\dfrac{a+b+c}{2}+\dfrac{ab+bc+ac}{2}}{2}=\dfrac{\dfrac{3}{2}+\dfrac{ab+bc+ac}{2}}{2}\left(1\right)\)

Theo hệ quả của bđt Cauchy ta có \(\left(a+b+c\right)^2\ge3\left(ab+bc+ac\right)\)

\(\Rightarrow ab+bc+ac\le\dfrac{\left(a+b+c\right)^2}{3}=3\)

\(\Rightarrow\dfrac{\dfrac{3}{2}+\dfrac{ab+bc+ac}{2}}{2}\le\dfrac{\dfrac{3}{2}+\dfrac{3}{2}}{2}=\dfrac{3}{2}\left(2\right)\)

Từ ( 1 ) và ( 2 ) ta có \(\dfrac{ab}{2\sqrt{a}}+\dfrac{bc}{2\sqrt{b}}+\dfrac{ac}{2\sqrt{c}}\le\dfrac{3}{2}\)

\(\Rightarrow3-\left(\dfrac{ab}{2\sqrt{a}}+\dfrac{bc}{2\sqrt{b}}+\dfrac{ac}{2\sqrt{c}}\right)\ge3-\dfrac{3}{2}=\dfrac{3}{2}\)

\(\Rightarrow VT\ge\dfrac{3}{2}\left(đpcm\right)\)

Dấu '' = '' xảy ra khi \(a=b=c=1\)

25 tháng 5 2018

Thanks you.!!!hiuhiu