Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề bài phải cho \(a+b+c\le1\) để xảy ra dấu "=" ở điều phải chứng minh.
Áp dụng bđt \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\)
với \(x=a^2+2bc,y=b^2+2ac,z=c^2+2ab\) được :
\(\frac{1}{a^2+2bc}+\frac{1}{b^2+2ac}+\frac{1}{c^2+2ab}\ge\frac{9}{a^2+b^2+c^2+2ab+bc+ac}\)
\(\Rightarrow\frac{1}{a^2+2bc}+\frac{1}{b^2+2ac}+\frac{1}{c^2+2ab}\ge\frac{9}{\left(a+b+c\right)^2}\ge9\)(đpcm)
Dễ chứng minh : (a + b + c)(1/a + 1/b + 1/c) >= 9
Áp dụng điều đó :
1/(a^2 + 2bc)+ 1/(b^2 + 2ac) + 1/(c^2 + 2ab) >= 9/(a^2 + b^2 + c^2 + 2ab + 2ac + 2bc) = 9/(a + b + c)^2 >= 9/1^2 = 9 (đpcm)
Bài 4:
Áp dụng bất đẳng thức Cauchy-shwarz dạng engel ta có:
\(\dfrac{1}{a^2+2bc}+\dfrac{1}{b^2+2ca}+\dfrac{1}{c^2+2ab}\ge\dfrac{\left(1+1+1\right)^2}{a^2+b^2+c^2+2ab+2bc+2ca}\)
\(=\dfrac{9}{\left(a+b+c\right)^2}=\dfrac{9}{9}=1\)
Dấu " = " xảy ra khi a = b = c = 1
\(\Rightarrowđpcm\)
Bài 1:
Ta có:
\(a^2+b^2-\frac{(a+b)^2}{2}=\frac{2(a^2+b^2)-(a+b)^2}{2}=\frac{(a-b)^2}{2}\geq 0\)
\(\Rightarrow a^2+b^2\geq \frac{(a+b)^2}{2}=\frac{2^2}{2}=2\)
(đpcm)
Dấu "=" xảy ra khi $a=b=1$
\(1.CMR:\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)\ge4\)
\(\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)=1+\frac{b}{a}+\frac{a}{b}+1=\frac{a}{b}+\frac{b}{a}+2\)
Áp dụng BĐT AM-GM ta có:
\(\frac{a}{b}+\frac{b}{a}\ge2\sqrt{\frac{a}{b}.\frac{b}{a}}=2\)
\(\Rightarrow\frac{a}{b}+\frac{b}{a}+2\ge2+2=4\)
Dấu '' = '' xảy ra khi \(a=b\)
\(2.\\ a.CMR:a^2+2b^2+c^2-2ab-2bc\ge0\forall a,b,c\)
\(a^2+2b^2+c^2-2ab-2bc=a^2-2ab+b^2+c^2-2bc+b^2=\left(a-b\right)^2+\left(b-c\right)^2\ge0\forall a,b,c\)
Dấu '' = '' xảy ra khi \(a=b=c\)
\(b.CMR:a^2+b^2-4a+6b+13\ge0\forall a,b\)
\(a^2+b^2-4a+6b+13=\left(a^2-4a+4\right)+\left(b^2+6b+9\right)=\left(a-2\right)^2+\left(b+9\right)^2\ge0\forall a,b\)
Dấu '' = '' xảy ra khi \(\left\{{}\begin{matrix}a=2\\b=-9\end{matrix}\right.\)
\(20\left(a^2+b^2\right)+2c^2=16a^2+c^2+16b^2+c^2+4a^2+4b^2\)
\(\ge8ab+8ac+8bc=8\left(Am-Gm\right)\)
=> \(10\left(a^2+b^2\right)+c^2\ge4\)
\(\dfrac{a^4+b^4}{2}+a^2+b^2\ge a^2b^2+a^2+b^2\)
Áp dụng tiếp BĐT \(x^2+y^2+z^2\ge xy+xz+yz\) ta có:
\(\left(ab\right)^2+a^2+b^2\ge ab.a+ab.b+ab=ab\left(a+b+1\right)\) (đpcm)
Dấu "=" xảy ra khi \(a=b=0\) hoặc \(a=b=1\)
Hình như đề bị sai
Áp dụng BĐT cô-si:
a^4+1>=2a^2
suy ra a^4 +1+2b^2>=2a^2+2b^2>=4ab(Cô-si)
Vậy a^4+1+2b^2>=4ab
BĐT cô-si:a^4+b^4>=4a^2b^2
Vậy 2a^4+2b^2+b^4+1>=4a^2b^2+4ab
Suy ra 2a^4+1+(b^2+1)^2>=(2ab+1)^2