K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 7 2018

\(a^2\left(b+c\right)+b^2\left(a+c\right)+c^2\left(a+b\right)+2abc=0\)

\(\Leftrightarrow a^2b+a^2c+ab^2+b^2c+ac^2+bc^2+2abc=0\)

\(\Leftrightarrow ab\left(a+b+c\right)+bc\left(a+b+c\right)+ac\left(a+c\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=-b\\b=-c\\c=-a\end{matrix}\right.\)

+) Với : \(a=-b\) , ta có :

\(a^{2019}+b^{2019}+c^{2019}=1\Leftrightarrow c=1\)

\(\Rightarrow Q=\dfrac{1}{a^{2019}}+\dfrac{1}{\left(-b\right)^{2019}}+1=1\)

Tương tự với 2 TH còn lại .

Ta đều có được : \(Q=1\)

3 tháng 7 2018

cam on nha

NV
20 tháng 1 2019

\(\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=1\)

\(\Leftrightarrow\left(a+b+c\right)\left(\dfrac{ab+ac+bc}{abc}\right)=1\)

\(\Leftrightarrow\left(a+b+c\right)\left(ab+ac+bc\right)-abc=0\)

\(\Leftrightarrow\left(a+b\right)\left(ab+ac+bc\right)+c\left(ab+ac+bc\right)-abc=0\)

\(\Leftrightarrow\left(a+b\right)\left(ab+ac+bc\right)+c^2\left(a+b\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left(ab+ac+bc+c^2\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left(a+c\right)\left(b+c\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}a=-b\\a=-c\\b=-c\end{matrix}\right.\)

Đến đây thì nghi ngờ bạn chép sai đề biểu thức R, lẽ ra phải là dấu nhân mới tính được, nếu ko thì kết quả vẫn còn 2 ẩn

\(R=\left(a^{2017}+b^{2017}\right)\left(b^{2019}+c^{2019}\right)\left(c^{2021}+a^{2021}\right)\)

Thế này mới chính xác, kết quả \(R=0\)

27 tháng 12 2018

\(\Rightarrow\frac{a+b+c}{a}+\frac{a+b+c}{b}+\frac{a+b+c}{c}-\frac{a+b+c}{a+b+c}=0\)

\(\Rightarrow\left(a+b+c\right).\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}-\frac{1}{a+b+c}\right)=0\)

xét: \(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}-\frac{1}{a+b+c}=0\left(\text{vì a+b+c khác 0}\right)\)

\(\text{ta có: }\frac{1}{a}+\frac{1}{b}+\frac{1}{c}-\frac{1}{a+b+c}=0\)

\(\Rightarrow\frac{ab+bc+ac}{abc}-\frac{1}{a+b+c}=0\)

\(\Rightarrow\frac{\left(ab+bc+ac\right).\left(a+b+c\right)-abc}{abc.\left(a+b+c\right)}=0\)

\(\Rightarrow\left(ab+bc+ac\right).\left(a+b+c\right)-abc=0\)

\(\Rightarrow\left(b+a\right).\left(c+a\right).\left(c+b\right)=0\)

\(\Rightarrow\hept{\begin{cases}b=-a\\a=-c\\c=-b\end{cases}}\)

\(M=\left(-b^{101}+b^{101}\right).\left(-c^{2017}+c^{2017}\right).\left(b^{2019}+-b^{2019}\right)=0\)

p/s: dài nhỉ =) 

AH
Akai Haruma
Giáo viên
17 tháng 7 2020

Tham khảo lời giải tại đây:

Câu hỏi của Nguyen ANhh - Toán lớp 8 | Học trực tuyến

AH
Akai Haruma
Giáo viên
17 tháng 7 2020

Lời giải:

\(a^3+b^3=c^3+d^3\)

$\Leftrightarrow (a+b)^3-3ab(a+b)=(c+d)^3-3cd(c+d)$

Mà $a+b=c+d$ nên $ab(a+b)=cd(c+d)$

Đến đây ta xét 2TH:

TH $a+b=c+d=0$ thì $a^{2019}+b^{2019}=c^{2019}+d^{2019}=0$ (đpcm)

TH $a+b=c+d\neq 0$ thì $ab=cd\Leftrightarrow \frac{a}{d}=\frac{c}{b}$

Đặt $\frac{a}{d}=\frac{c}{b}=t\Rightarrow a=dt; c=bt$

Khi đó:

$a+b=c+d$

$\Leftrightarrow dt+b=bt+d\Leftrightarrow (t-1)(d-b)=0$

Nếu $t-1=0\Rightarrow a=d; c=b$

$\Rightarrow a^{2019}=d^{2019}; b^{2019}=c^{2019}$

$\Rightarrow a^{2019}+b^{2019}=c^{2019}+d^{2019}$ (đpcm)

Nếu $d-b=0\Leftrightarrow b=d\Rightarrow a=c$

$\Rightarrow a^{2019}+b^{2019}=c^{2019}+d^{2019}$ (đpcm)

Vậy..........

6 tháng 12 2018

\(2x^2+y^2+z^2-2xy-2x+1=0\)

\(\Rightarrow\left(x^2+y^2-2xy\right)+\left(x^2-2x+1\right)+z^2=0\)

\(\Rightarrow\left(x-y\right)^2+\left(x-1\right)^2+z^2=0\)

\(\Leftrightarrow x=y=1;=0\)

\(A=x^{2018}+y^{2019}+z^{2020}=1+1+0=2\)

2)

\(a+b+c=6\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)=36\)

\(\Leftrightarrow12+2\left(ab+bc+ac\right)=36\Leftrightarrow ab+bc+ac=12\)

Kết hợp với \(a^2+b^2+c^2=12\Leftrightarrow a^2+b^2+c^2=ab+bc+ac\)

\(\Leftrightarrow\dfrac{1}{2}\left(a-b\right)^2+\dfrac{1}{2}\left(b-c\right)^2+\dfrac{1}{2}\left(c-a\right)^2=0\Leftrightarrow a=b=c\)

Kết hợp với \(a+b+c=6\Leftrightarrow a=b=c=2\)

\(P=\left(a-3\right)^{2019}+\left(b-3\right)^{2019}+\left(c-3\right)^{2019}=\left(-1\right)^{2019}+\left(-1\right)^{2019}+\left(-1\right)^{2019}=-3\)

24 tháng 12 2019

Ta có \(a^3+b^3+c^3=3abc\Rightarrow a^3+b^3+c^3-3abc=0\)
\(\Leftrightarrow a^3+b^3+3a^2b+3ab^2+c^3-3abc-3a^2b-3ab^2=0\)
\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2+2ab-bc-ac\right)-3ab\left(a+b+c\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)
\(\Leftrightarrow\frac{1}{2}\left(a+b+c\right)\left(2a^2+2b^2+2c^2-2ab-2bc-2ac\right)=0\)
\(\Leftrightarrow\frac{1}{2}\left(a+b+c\right)\left[\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ac+a^2\right)\right]=0\)

\(\Leftrightarrow\left(a+b+c\right)\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a+b+c=0\\\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}a+b+c=0\\a=b=c\end{matrix}\right.\)
\(\Rightarrow M=\frac{a^{2019}}{b^{2019}}+\frac{b^{2019}}{c^{2019}}+\frac{c^{2019}}{a^{2019}}=\frac{a^{2019}}{a^{2019}}+\frac{b^{2019}}{b^{2019}}+\frac{c^{2019}}{c^{2019}}=1+1+1=3\)