Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:
\(VT=\frac{1}{a}+\frac{2}{b}=\frac{1}{a}+\frac{1}{b}+\frac{1}{b}\)
\(\ge\frac{\left(1+1+1\right)^2}{a+2b}\ge\frac{9}{\sqrt{\left(1+2\right)\left(a^2+2b^2\right)}}\)
\(>\frac{9}{\sqrt{3\cdot3c^2}}=\frac{9}{3c}=\frac{3}{c}=VP\)
CHÚ Ý: BÀI TOÁN SAU:
Nếu x+y+z=0 thì \(x^3+y^3+z^3=3xyz\)
Trở lại với bài toán: chú ý: a-1+b-1+c-1=0
=> \(\left(a-1\right)^3+\left(b-1\right)^3+\left(c-1\right)^3=3\left(a-1\right)\left(b-1\right)\left(c-1\right)\)
Ta phải CM: (a-1)(b-1)(c-1)\(\ge\)\(-\frac{1}{4}\)
đặt: x=a-1, y=b-1, z=c-1
khi đó bài toán trở thành: x+y+z=0, CM xyz\(\ge-\frac{1}{4}\)
Ta có: -y=x+z => CM xz(x+z)\(\le\frac{1}{4}\)
Áp dung BĐT Cauchy và biến đổi đồng nhất
tương tự với -x và -z cộng lại ta được DPCM
#https://olm.vn/hoi-dap/detail/203085493090.html
Bạn tham khảo ạ
THƯA CHỊ BÀI NÀY LÀ SAO AK, E HỌC LỚP 5 ** BIK BÀI NÀY NHÉ ~_~ !!!!!!!!!!!
a2(b+c)2+5bc+b2(a+c)2+5ac≥4a29(b+c)2+4b29(a+c)2=49(a2(1−a)2+b2(1−b)2)(vì a+b+c=1)
a2(1−a)2−9a−24=(2−x)(3x−1)24(1−a)2≥0(vì )<a<1)
⇒a2(1−a)2≥9a−24
tương tự: b2(1−b)2≥9b−24
⇒P⩾49(9a−24+9b−24)−3(a+b)24=(a+b)−94−3(a+b)24.
đặt t=a+b(0<t<1)⇒P≥F(t)=−3t24+t−94(∗)
Xét hàm (∗) được: MinF(t)=F(23)=−19
⇒MinP=MinF(t)=−19.dấu "=" xảy ra khi a=b=c=13