Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Fairy Tail bn tham khảo nè:
x, y , z hữu tỉ
√x + √y + √z hữu tỉ
- Nếu trong ba số √x , √y , √z có 1 số hữu tỉ , giả sử √x => √y + √z hữu tỉ
Đặt y = a/b; z = c/d đều hữu tỉ với a,b, c, d thuộc N *
√y + √z hữu tỉ => (√y + √z)² hữu tỉ => √(zy) hữu tỉ => √(ac/bd) hữu tỉ => ac/bd = (p/q)² => √(a/b) = p/q√(d/c) với p, q Є N*
=> √y + √z = √(a/b) + √(c/d) = p/q√(d/c) + √(c/d) = (pd + qc)/√(cd) hữu tỉ => √(cd) hữu tỉ => d√(c/d) = √(cd) hữu tỉ => √z = √(c/d) hữu tỉ => √y cung hữu tỉ
Vậy √x , √y , √z đều là số hữu tỉ
- Nếu cả √x , √y , √z đều là số vô tỉ
Đặt √x + √y + √z = p/q với p, q thuộc N* => x + y + 2√(xy) = (p/q)² - 2p/q √z + z =>
=> √(xy) + p/q√z hữu tỉ
Do xy hửu tỉ và (p/q)^2 z hữu tỉ nên có thể đặt xy = a/b và (p/q)^2 z = c/d
thì ta có √(a/b) + √(c/d) hữu tỉ. đến đây lí luận như trường hợp trên thì suy ra √(xy) và p/q√z hữu tỉ => √z hữu tỉ => mâu thuẫn với giả thiết √z vô tỉ
Vậy √x , √y , √z đều là số hữu tỉ
`````````````````````````````
Với bài 3 em có thể rút ngắn hơn bằng cách giả sử một trong ba số √x , √y , √z là số vô tỉ , ví dụ là √z, sau đó dùng cách lý luận ở trường hợp 2 suy ra √(xy) + p/q√z hữu tỉ, sau đó lại áp dụng lý luận như của trường hợp 1 để suy ra √z vô tỉ => trái giả thiết, tức là ko có số nào trong chứng là số vô tỉ cả. Đến đây bài toán đã dc chưng minh xong
```````````````````````````````````````...
Bài 4/ Đề của em ko đúng, phải thay dấu - bằng dấu + . Khi đó ta làm thế này
(b^2+c^2-a^2)/2bc+(a^2+c^2-b^2)/2ca +(a^2+b^2-c^2)/2ab=1
<=> (b^2+c^2-a^2)/2bc - 1 +(a^2+c^2-b^2)/2ca - 1 + (a^2+b^2-c^2)/2ab + 1 = 0
<=> a[ (b-c)² - a²] + b[ ( a-c)² -b²] + c[ (a+b)² - c²] = 0
<=> a( a+b-c)(b-a-c) + b( a+b-c)(a-b-c) + c(a+b-c)(a+b+c) = 0
<=> (a+b-c) [ c(a+b+c) -a(a+c-b) - b(b+c-a)] = 0
<=> (a+b-c)[ c² -(a-b)²] = 0
<=> (a+b-c)(a+c-b)(b+c-a) = 0
nếu a + b = c =>(b^2+c^2-a^2)/2bc = 1 ; (a^2+c^2-b^2)/2ca = 1 và (a^2+b^2-c^2)/2ab = -1
xét tương tự cho các trường hợp a + c-b = 0 và b+c-a = 0 suy ra DPCM
thay 1 bởi \(ab+bc+ca\)
Ta có : \(\sqrt{\left(a^2+ab+bc+ca\right)\left(b^2+ab+bc+ca\right)\left(c^2+ab+bc+ca\right)}\)
Ta thấy : \(a^2+ab+bc+ca=\left(a+b\right)\left(a+c\right)\)
\(b^2+ab+bc+ca=\left(b+c\right)\left(a+b\right)\)
\(c^2+ab+bc+ca=\left(a+c\right)\left(b+c\right)\)
\(\Rightarrow\sqrt{\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2}=\left(a+b\right)\left(b+c\right)\left(c+a\right)\)Là một số hữu tỉ vì\(a;b;c\)là các số hữu tỉ
\(a\sqrt{2}+b\sqrt{3}=-c\)
\(\Leftrightarrow2a+3b+2ab\sqrt{6}=c^2\)
\(\Leftrightarrow2ab\sqrt{6}=c^2-2a-3b\)
Vì VT là số vô tỷ còn VP là số hữu tỷ nên để 2 vế bằng nhau thì.
\(\Rightarrow\hept{\begin{cases}ab=0\\c^2-2a-3b=0\end{cases}}\)
Với \(a=0\)
\(\Rightarrow b\sqrt{3}=-c\)
\(\Rightarrow b=c=0\)
Với \(b=0\)
\(\Rightarrow a\sqrt{2}=-c\)
\(\Rightarrow a=c=0\)
Vậy \(a=b=c=0\)
Lớp 9 anh cân tất :
\(\frac{1}{a}+\frac{1}{b}=\frac{1}{c}\Leftrightarrow\frac{a+b}{ab}=\frac{1}{c}\Rightarrow c=\frac{ab}{a+b}\)
\(\Rightarrow\sqrt{a^2+b^2+c^2}=\sqrt{a^2+b^2+\frac{\left(ab\right)^2}{\left(a+b\right)^2}}=\sqrt{\frac{a^2\left(a+b\right)^2+b^2\left(a+b\right)^2+\left(ab\right)^2}{\left(a+b\right)^2}}\)
\(=\sqrt{\frac{a^4+2ab^3+3a^2b^2+2a^3b+b^4}{\left(a+b\right)^2}}=\sqrt{\frac{\left(b^2+ab+a^2\right)^2}{\left(a+b\right)}}=\frac{b^2+ab+a^2}{a+b}\)là số hữu tỉ
=> đpcm
Cái dòng cuối mình viết nhầm \(\sqrt{\frac{\left(a^2+ab+b^2\right)^2}{\left(a+b\right)^2}}\) thành \(\sqrt{\frac{\left(a^2+ab+b^2\right)^2}{\left(a+b\right)}}\); sửa cho mk chỗ đó