Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Áp dụng BĐT Cauchy-Schwarz:
\(\text{VT}=\frac{a^3}{2b+3c}+\frac{b^3}{2c+3a}+\frac{c^3}{2a+3b}=\frac{a^4}{2ab+3ac}+\frac{b^4}{2bc+3ba}+\frac{c^4}{2ac+3bc}\)
\(\geq \frac{(a^2+b^2+c^2)^2}{2ab+3ac+2bc+3ba+2ac+3bc}=\frac{(a^2+b^2+c^2)^2}{5(ab+bc+ac)}\)
Theo hệ quả của BĐT AM-GM ta có:
\(a^2+b^2+c^2\geq ab+bc+ac\)
\(\Rightarrow \text{VT}\geq \frac{(a^2+b^2+c^2)(ab+bc+ac)}{5(ab+bc+ac)}=\frac{a^2+b^2+c^2}{5}\)
Ta có đpcm.
Dấu bằng xảy ra khi \(a=b=c\)
b, \(\frac{a^3}{b+2c}+\frac{b^3}{c+2a}+\frac{c^3}{a+2b}\ge1\)
\(\frac{a^4}{ab+2ac}+\frac{b^4}{bc+2ab}+\frac{c^4}{ac+2bc}\ge\frac{\left(a^2+b^2+c^2\right)^2}{ab+bc+ac+2ac+2ab+2bc}\)( Bunhia dạng phân thức )
mà \(a^2+b^2+c^2\ge ab+bc+ac\)
\(=\frac{\left(ab+bc+ac\right)^2}{3+2\left(ab+ac+bc\right)}=\frac{9}{3+6}=1\)( đpcm )
1.
Điều kiện x \ge \dfrac14x≥41.
Phương trình tương đương với \left(\sqrt2.\sqrt{2x^2+x+1}-2\right)-\left(\sqrt{4x-1}-1\right)+2x^2+3x-2 = 0(2.2x2+x+1−2)−(4x−1−1)+2x2+3x−2=0 \Leftrightarrow \dfrac{4x^2+2x-2}{\sqrt2.\sqrt{2x^2+x+1}+2} - \dfrac{4x-2}{\sqrt{4x-1}+1} + (x+2)(2x-1) = 0⇔2.2x2+x+1+24x2+2x−2−4x−1+14x−2+(x+2)(2x−1)=0\\ \Leftrightarrow (2x-1)\left(\dfrac{2(x+1)}{\sqrt2 \sqrt{2x^2+x+1}+2} - \dfrac2{\sqrt{4x-1}+1} + x + 2\right) = 0⇔(2x−1)(22x2+x+1+22(x+1)−4x−1+12+x+2)=0
\Leftrightarrow \left[\begin{aligned} & x =\dfrac12\\ & \dfrac{2(x+1)}{\sqrt2 \sqrt{2x^2+x+1}+2} - \dfrac2{\sqrt{4x-1}+1} + x + 2 = 0\\ \end{aligned}\right.⇔⎣⎢⎢⎢⎡x=2122x2+x+1+22(x+1)−4x−1+12+x+2=0
Với x \ge \dfrac14x≥41 ta có:
\dfrac{2(x+1)}{\sqrt2 \sqrt{2x^2+x+1}+2} > 022x2+x+1+22(x+1)>0
- \dfrac2{\sqrt{4x-1}+1} \ge -2−4x−1+12≥−2
x + 2 > 2x+2>2.
Suy ra \dfrac{2(x+1)}{\sqrt2 \sqrt{2x^2+x+1}+2} - \dfrac2{\sqrt{4x-1}+1} + x + 2 > 022x2+x+1+22(x+1)−4x−1+12+x+2>0.
Vậy phương trình có nghiệm duy nhất x = \dfrac12.x=21.
2.
Đặt P = \dfrac{a^3}{b+2c} + \dfrac{b^3}{c+2a} + \dfrac{c^3}{a+2b}P=b+2ca3+c+2ab3+a+2bc3
Áp dụng bất đẳng thức Cauchy cho hai số dương \dfrac{9a^3}{b + 2c}b+2c9a3 và (b+2c)a(b+2c)a ta có
\dfrac{9a^3}{b+2c} + (b+2c)a \ge 6a^2b+2c9a3+(b+2c)a≥6a2.
Tương tự \dfrac{9b^3}{c+2a} + (c+2a)b \ge 6b^2c+2a9b3+(c+2a)b≥6b2, \dfrac{9c^3}{a+2b} + (a+2b)c \ge 6c^2a+2b9c3+(a+2b)c≥6c2.
Cộng các vế ta có 9P + 3(ab+bc+ca) \ge 6(a^2+b^2+c^2)9P+3(ab+bc+ca)≥6(a2+b2+c2).
Mà a^2+b^2+c^2 \ge ab+bc+ca = 4a2+b2+c2≥ab+bc+ca=4 nên P \ge 1P≥1 (ta có đpcm).
Theo BĐT \(AM-GM\) ta có :
\(\dfrac{a}{\sqrt{2b^2+2c^2-a^2}}=\dfrac{\sqrt{3}a^2}{\sqrt{3a^2\left(2b^2+2c^2-a^2\right)}}\ge\dfrac{\sqrt{3}a^2}{\dfrac{2a^2+2b^2+2c^2}{2}}=\dfrac{\sqrt{3}a^2}{a^2+b^2+c^2}\)
Tương tự ta có :
\(\dfrac{b}{\sqrt{2c^2+2a^2-b^2}}\ge\dfrac{\sqrt{3}b^2}{a^2+b^2+c^2}\)
\(\dfrac{c}{\sqrt{2a^2+2b^2-c^2}}\ge\dfrac{\sqrt{3}c^2}{a^2+b^2+c^2}\)
Cộng từng vế BĐT :
\(\Rightarrow VT\ge\dfrac{\sqrt{3}\left(a^2+b^2+c^2\right)}{a^2+b^2+c^2}=\sqrt{3}\)
\("="\Leftrightarrow a=b=c\)
Bài 1:
Áp dụng BĐT AM-GM ta có:
\(a-\dfrac{a^2}{a+b^2}=\dfrac{ab^2}{a+b^2}\le\dfrac{ab^2}{2b\sqrt{a}}=\dfrac{b\sqrt{a}}{2}\)
Tương tự cho các BĐT còn lại cũng có:
\(b-\dfrac{b^2}{b+c^2}\le\dfrac{c\sqrt{b}}{2};c-\dfrac{c^2}{c+a^2}\le\dfrac{a\sqrt{c}}{2}\)
Sau đó cộng theo vế các BĐT trên
\(\dfrac{a^2}{a+b^2}+\dfrac{b^2}{b+c^2}+\dfrac{c^2}{c+a^2}\ge3-\dfrac{1}{2}\left(b\sqrt{a}+c\sqrt{b}+a\sqrt{c}\right)\)
\(\ge3-\dfrac{1}{2}\sqrt{\left(a+b+c\right)\left(ab+bc+ca\right)}\)
\(\ge3-\dfrac{1}{2}\sqrt{\left(a+b+c\right)\cdot\dfrac{\left(a+b+c\right)^2}{3}}=3-\dfrac{3}{2}=\dfrac{3}{2}\)
Đẳng thức xảy ra khi \(a=b=c=1\)
Bài 2:
Áp dụng BĐT AM-GM ta có:
\(\dfrac{a}{\sqrt{2b^2+2c^2-a^2}}=\dfrac{\sqrt{3}a^2}{\sqrt{3a^2\left(2b^2+2c^2-a^2\right)}}\)
\(\ge\dfrac{\sqrt{3}a^2}{\dfrac{3a^2+2b^2+2c^2-a^2}{2}}=\dfrac{\sqrt{3}a^2}{a^2+b^2+c^2}\)
Tương tự cho các BĐT còn lại ta có:
\(\dfrac{b}{\sqrt{2a^2+2c^2-b^2}}\ge\dfrac{\sqrt{3}b^2}{a^2+b^2+c^2};\dfrac{c}{\sqrt{2a^2+2b^2-c^2}}\ge\dfrac{\sqrt{3}c^2}{a^2+b^2+c^2}\)
Cộng theo vế 3 BĐT trên ta có:
\(VT\ge\dfrac{\sqrt{3}\left(a^2+b^2+c^2\right)}{a^2+b^2+c^2}=\sqrt{3}=VP\)
Đẳng thức xảy ra khi \(a=b=c\)
Lời giải:
Ta có: \(a^2b+b^2c+c^2a\geq \frac{9a^2b^2c^2}{1+2a^2b^2c^2}\)
\(\Leftrightarrow (a^2b+b^2c+c^2a)(1+2a^2b^2c^2)\geq 9a^2b^2c^2\)
\(\Leftrightarrow a^2b+b^2c+c^2a+2a^4b^3c^2+2a^2b^4c^3+2a^3b^2c^4\geq 3a^2b^2c^2(a+b+c)(*)\)
--------------------------
Áp dụng BĐT AM-GM ta có:
\(a^2b+a^4b^3c^2+a^3b^2c^4\geq 3\sqrt[3]{a^9b^6c^6}=3a^3b^2c^2\)
\(b^2c+a^2b^4c^3+a^4b^3c^2\geq 3a^2b^3c^2\)
\(c^2a+a^3b^2c^4+a^2b^4c^3\geq 3a^2b^2c^3\)
Cộng theo vế:
\(\Rightarrow a^2b+b^2c+c^2a+2a^4b^3c^2+2a^2b^4c^3+2a^3b^2c^4\geq 3a^2b^2c^2(a+b+c)\)
Vậy $(*)$ đúng
Do đó ta có đpcm
Dấu bằng xảy ra khi $a=b=c=1$
\(a^2+2b^2+3=\left(a^2+b^2\right)+\left(b^2+1\right)+2\ge2ab+2b+2=2\left(ab+b+1\right)\)
Tương tự ...
\(\Rightarrow P\le\dfrac{1}{2\left(ab+b+1\right)}+\dfrac{1}{2\left(bc+c+1\right)}+\dfrac{1}{2\left(ca+a+1\right)}\)
\(=\dfrac{1}{2}\left(\dfrac{c}{abc+bc+c}+\dfrac{1}{bc+c+1}+\dfrac{bc}{ca.bc+a.bc+bc}\right)\)
\(=\dfrac{1}{2}\left(\dfrac{c}{1+bc+c}+\dfrac{1}{bc+c+1}+\dfrac{bc}{c+1+bc}\right)\)
\(=\dfrac{1}{2}\left(\dfrac{c+1+bc}{1+bc+c}\right)=\dfrac{1}{2}\)
\(P_{max}=\dfrac{1}{2}\) khi \(a=b=c=1\)
Ta có \(a+b^2\le\dfrac{a^2+1}{2}+b^2=\dfrac{a^2+2b^2+1}{2}\)
\(\Rightarrow\dfrac{2a^2}{a+b^2}\ge\dfrac{4a^2}{a^2+2b^2+1}=\dfrac{4a^4}{a^4+2b^2a^2+a^2}\). Lập 2 BĐT tương tự rồi áp dụng bất đẳng thức BCS, ta có:
\(\dfrac{2a^2}{a+b^2}+\dfrac{2b^2}{b+c^2}+\dfrac{2c^2}{c+a^2}\ge\dfrac{\left(2a^2+2b^2+2c^2\right)^2}{a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)+a^2+b^2+c^2}\) \(=\dfrac{4\left(a^2+b^2+c^2\right)^2}{\left(a^2+b^2+c^2\right)^2+3}\)\(=\dfrac{4.3^2}{3^2+3}=3\).
Mà \(a+b+c\le\sqrt{3\left(a^2+b^2+c^2\right)}=3\) nên ta có đpcm. ĐTXR \(\Leftrightarrow a=b=c=1\)
Lời giải:
Áp dụng BĐT Cauchy ta có:
\(a^2+b^2\geq 2ab\)
\(b^2+1\geq 2b\)
Suy ra \(a^2+2b^2+3\geq 2(ab+b+1)\) \(\Rightarrow \frac{1}{a^2+2b^2+3}\leq \frac{1}{2(ab+b+1)}\)
Thực hiện toàn toàn tương tự với các phân thức còn lại và cộng theo vế:
\(\text{VT}\leq \frac{1}{2}\underbrace{\left(\frac{1}{ab+b+1}+\frac{1}{bc+c+1}+\frac{1}{ca+a+1}\right)}_{M}(1)\)
Lại có: \(M=\frac{1}{ab+b+1}+\frac{1}{bc+c+1}+\frac{1}{ca+a+1}=\frac{ac}{ab.ac+b.ac+ac}+\frac{a}{bc.a+c.a+a}+\frac{1}{ca+a+1}\)
\(=\frac{ac}{a+1+ac}+\frac{a}{1+ac+a}+\frac{1}{ac+a+1}=\frac{ac+a+1}{ac+a+1}=1(2)\)
Từ \((1); (2)\Rightarrow \text{VT}\leq \frac{1}{2}\) (đpcm)
Dấu bằng xảy ra khi \(a=b=c=1\)