Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Em ghi vội nó hơi sai
\(\sqrt{2012a+\frac{\left(b-c\right)^2}{2}}+\sqrt{2012b+\frac{\left(c-a\right)^2}{2}}+\sqrt{2012c+\frac{\left(a-b\right)^2}{2}}\le2012\sqrt{2}\)
\(\sqrt{2012a+\frac{\left(b-c\right)^2}{2}}=\sqrt{2a\left(a+b+c\right)+\frac{\left(b-c\right)^2}{2}}\)
\(=\sqrt{\frac{4a^2+4ab+4ac+b^2+c^2-2bc}{2}}=\sqrt{\frac{\left(2a+b+c\right)^2-4bc}{2}}\le\sqrt{\frac{\left(2a+b+c\right)^2}{2}}=\frac{1}{\sqrt{2}}\left(2a+b+c\right)\)
Tương tự:
\(\sqrt{2012b+\frac{\left(c-a\right)^2}{2}}\le\frac{1}{\sqrt{2}}\left(a+2b+c\right)\) ; \(\sqrt{2012c+\frac{\left(a-b\right)^2}{2}}\le\frac{1}{\sqrt{2}}\left(a+b+2c\right)\)
Cộng vế với vế:
\(VT\le\frac{1}{\sqrt{2}}\left(4a+4b+4c\right)=2\sqrt{2}\left(a+b+c\right)=2012\sqrt{2}\)
Dấu "=" xảy ra khi \(\left(a;b;c\right)=\left(1006;0;0\right)\) và hoán vị
Gọi VT là P
Ta có:
\(\sqrt{2012a+\dfrac{\left(b-c\right)^2}{2}}=\sqrt{2a\left(a+b+c\right)+\dfrac{\left(b-c\right)^2}{2}}=\sqrt{\dfrac{\left(2a+b+c\right)^2-4bc}{2}}\le\dfrac{2a+b+c}{\sqrt{2}}\left(1\right)\)
Tương tự ta có:
\(\left\{{}\begin{matrix}\sqrt{2012b+\dfrac{\left(c-a\right)^2}{2}}\le\dfrac{2b+c+a}{\sqrt{2}}\left(2\right)\\\sqrt{2012c+\dfrac{\left(a-b\right)^2}{2}}\le\dfrac{2c+a+b}{\sqrt{2}}\left(3\right)\end{matrix}\right.\)
Cộng (1), (2), (3) vế theo vế ta được
\(P\le\dfrac{2a+b+c}{\sqrt{2}}+\dfrac{2b+c+a}{\sqrt{2}}+\dfrac{2c+a+b}{\sqrt{2}}\)
\(=\dfrac{4}{\sqrt{2}}\left(a+b+c\right)=2012\sqrt{2}\)
Dấu = xảy ra khi \(\left(a,b,c\right)=\left(1006,0,0;0,1006,0;0,0,1006\right)\)
Ta có:
\(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}=\frac{\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2-\left(a+b+c\right)}{2}=\frac{9-5}{2}=2\)
Suy ra \(a+2=a+\sqrt{ab}+\sqrt{bc}+\sqrt{ca}=\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{c}+\sqrt{a}\right)\)
Tương tự, ta áp dụng với hai biến thực dương còn lại, thu được:
\(\hept{\begin{cases}b+2=\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{b}+\sqrt{c}\right)\\c+2=\left(\sqrt{b}+\sqrt{c}\right)\left(\sqrt{c}+\sqrt{a}\right)\end{cases}}\)
Khi đó, ta nhân vế theo vế đối với ba đẳng thức trên, nhận thấy: \(\left(a+2\right)\left(b+2\right)\left(c+2\right)=\left[\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{b}+\sqrt{c}\right)\left(\sqrt{c}+\sqrt{a}\right)\right]^2\)
\(\Rightarrow\) \(\sqrt{\left(a+2\right)\left(b+2\right)\left(c+2\right)}=\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{b}+\sqrt{c}\right)\left(\sqrt{c}+\sqrt{a}\right)\) (do \(a,b,c>0\) )
nên \(\frac{\sqrt{a}}{a+2}+\frac{\sqrt{b}}{b+2}+\frac{\sqrt{c}}{c+2}=\frac{\sqrt{a}\left(\sqrt{b}+\sqrt{c}\right)+\sqrt{b}\left(\sqrt{c}+\sqrt{a}\right)+\sqrt{c}\left(\sqrt{a}+\sqrt{b}\right)}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{b}+\sqrt{c}\right)\left(\sqrt{c}+\sqrt{a}\right)}\)
\(=\frac{2\left(\sqrt{ab}+\sqrt{ca}+\sqrt{ca}\right)}{\sqrt{\left(a+2\right)\left(b+2\right)\left(c+2\right)}}=\frac{4}{\sqrt{\left(a+2\right)\left(b+2\right)\left(c+2\right)}}\)
\(\Rightarrow\) \(đpcm\)
bạn sẽ tính đc \(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}=2\)
Thay vao đc \(a+2=\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}+\sqrt{c}\right)\)
lm Tương tụ r quy đòng nha bạn
bạn sẽ tính đc \(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}=2\)
Ấy ,,,vi diệu ko,,,,rồi thay tiếp vào \(a+2=\sqrt{a}^2+\sqrt{ab}+\sqrt{bc}+\sqrt{ca}=\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}+\sqrt{c}\right)\)
bạn lm tương tự r quy đồng,,OK??
~ Hóa ra là tình yêu phút chốc, cứ tin rắng ngày mai người sẽ thấy ~
tui lớp lớp 6 not làm được HA HA HA!!!