Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(P=\dfrac{bc}{\sqrt{3a+bc}}+\dfrac{ca}{\sqrt{3b+ca}}+\dfrac{ab}{\sqrt{3c+ab}}\)
\(=\dfrac{bc}{\sqrt{\left(a+b+c\right)a+bc}}+\dfrac{ca}{\sqrt{\left(a+b+c\right)b+ca}}+\dfrac{ab}{\sqrt{\left(a+b+c\right)+ab}}\)\(=\dfrac{bc}{\sqrt{a^2+ab+ac+bc}}+\dfrac{ca}{\sqrt{ab+b^2+bc+ca}}+\dfrac{ab}{\sqrt{c^2+ac+ab+bc}}\)\(=\dfrac{bc}{\sqrt{\left(a+b\right)\left(a+c\right)}}+\dfrac{ca}{\sqrt{\left(b+c\right)\left(b+a\right)}}+\dfrac{ab}{\sqrt{\left(c+a\right)\left(c+b\right)}}\le\)\(\le\dfrac{1}{2}\left(\dfrac{b^2}{a+b}+\dfrac{c^2}{a+c}+\dfrac{c^2}{b+c}+\dfrac{a^2}{a+b}+\dfrac{a^2}{a+c}+\dfrac{b^2}{b+c}\right)\)
(Theo BĐT cauchy với \(a,b,c>0\) )
\(\le\dfrac{1}{2}\left(\dfrac{\left(2a+2b+2c\right)^2}{4\left(a+b+c\right)}\right)=\dfrac{1}{2}.\left(\dfrac{6^2}{4.3}\right)=\dfrac{3}{2}\)
(theo BĐT cauchy schwarz)
Vậy Max P =\(\dfrac{3}{2}\Leftrightarrow a=b=c=1\)
Ta có \(ab+bc+ca=3abc\)
\(\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=3\)
Đặt \(x=\dfrac{1}{a},y=\dfrac{1}{b},z=\dfrac{1}{c}\) thì ta có \(x,y,z>0;x+y+z=3\) và
\(\sqrt{\dfrac{a}{3b^2c^2+abc}}=\sqrt{\dfrac{\dfrac{1}{x}}{3.\dfrac{1}{y^2z^2}+\dfrac{1}{xyz}}}=\sqrt{\dfrac{\dfrac{1}{x}}{\dfrac{3x+yz}{xy^2z^2}}}=\sqrt{\dfrac{y^2z^2}{3x+yz}}\) \(=\dfrac{yz}{\sqrt{3x+yz}}\) \(=\dfrac{yz}{\sqrt{x\left(x+y+z\right)+yz}}\) \(=\dfrac{yz}{\sqrt{\left(x+y\right)\left(x+z\right)}}\)
Do đó \(T=\dfrac{yz}{\sqrt{\left(x+y\right)\left(x+z\right)}}+\dfrac{zx}{\sqrt{\left(y+z\right)\left(y+x\right)}}+\dfrac{xy}{\sqrt{\left(z+x\right)\left(z+y\right)}}\)
Lại có \(\dfrac{yz}{\sqrt{\left(x+y\right)\left(x+z\right)}}\le\dfrac{yz}{2\left(x+y\right)}+\dfrac{yz}{2\left(x+z\right)}\)
Lập 2 BĐT tương tự rồi cộng theo vế, ta được \(T\le\dfrac{yz}{2\left(x+y\right)}+\dfrac{yz}{2\left(x+z\right)}+\dfrac{zx}{2\left(y+z\right)}+\dfrac{zx}{2\left(y+x\right)}\) \(+\dfrac{xy}{2\left(z+x\right)}+\dfrac{xy}{2\left(z+y\right)}\)
\(T\le\dfrac{yz+zx}{2\left(x+y\right)}+\dfrac{xy+zx}{2\left(y+z\right)}+\dfrac{xy+yz}{2\left(z+x\right)}\)
\(T\le\dfrac{x+y+z}{2}\) (do \(x+y+z=3\))
\(T\le\dfrac{3}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=z=1\) \(\Leftrightarrow a=b=c=1\)
Vậy \(maxT=\dfrac{3}{2}\), xảy ra khi \(a=b=c=1\)
(Mình muốn gửi lời cảm ơn tới bạn Nguyễn Đức Trí vì ý tưởng của bài này chính là bài mình vừa hỏi lúc nãy trên diễn đàn. Cảm ơn bạn Trí rất nhiều vì đã giúp mình có được lời giải này.)
Bạn Lê Song Phương xem lại dùm nhé, thanks!
\(...\dfrac{yz}{\sqrt[]{\left(x+y\right)\left(x+z\right)}}\le\dfrac{2yz}{x+y}+\dfrac{2yz}{x+z}\)
\(...\Rightarrow T\le2.3=6\)
\(\Rightarrow GTLN\left(T\right)=6\left(tạia=b=c=1\right)\)
\(\sqrt{\dfrac{ab}{c+ab}}=\sqrt{\dfrac{ab}{c\left(a+b+c\right)+ab}}=\sqrt{\dfrac{ab}{\left(a+c\right)\left(b+c\right)}}\le\dfrac{1}{2}\left(\dfrac{a}{a+c}+\dfrac{b}{b+c}\right)\)
Tương tự: \(\sqrt{\dfrac{bc}{a+bc}}\le\dfrac{1}{2}\left(\dfrac{b}{a+b}+\dfrac{c}{a+c}\right)\) ; \(\sqrt{\dfrac{ca}{b+ca}}\le\dfrac{1}{2}\left(\dfrac{a}{a+b}+\dfrac{c}{b+c}\right)\)
Cộng vế với vế:
\(P\le\dfrac{1}{2}\left(\dfrac{a}{a+c}+\dfrac{c}{a+c}+\dfrac{b}{b+c}+\dfrac{c}{b+c}+\dfrac{b}{a+b}+\dfrac{a}{a+b}\right)=\dfrac{3}{2}\)
Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{3}\)
Cho a, b, c, d là các chữ số thỏa mãn: ab+ca=da ab-ca=a Tìm giá trị của d.
Lời giải:
Theo hệ quả quen thuộc của bđt AM-GM:
$(a+b+c)^2\leq 3(a^2+b^2+c^2)\leq 9$
$\Rightarrow a+b+c\leq 3$ (đpcm)
Từ đây ta có:
\(E\leq \frac{a}{\sqrt[3]{(a+b+c)a+bc}}+\frac{b}{\sqrt[3]{(a+b+c)b+ac}}+\frac{c}{\sqrt[3]{c(a+b+c)+ab}}\)
\(=\frac{a}{\sqrt[3]{(a+b)(a+c)}}+\frac{b}{\sqrt[3]{(b+c)(b+a)}}+\frac{c}{\sqrt[3]{(c+a)(c+b)}}\)
\(\leq \frac{\sqrt[3]{2}}{3}(\frac{a}{2}+\frac{a}{a+b}+\frac{a}{a+c})+\frac{\sqrt[3]{2}}{3}(\frac{b}{2}+\frac{b}{b+a}+\frac{b}{b+c})+\frac{\sqrt[3]{2}}{3}(\frac{c}{2}+\frac{c}{c+a}+\frac{c}{c+b})\)
\(=\frac{\sqrt[3]{2}(a+b+c)}{6}+\frac{\sqrt[3]{2}}{3}(\frac{a+b}{a+b}+\frac{b+c}{b+c}+\frac{c+a}{c+a})\leq \frac{3\sqrt[3]{2}}{2}\)
Vậy.................
\(3\ge a^2+b^2+c^2\ge\dfrac{1}{3}\left(a+b+c\right)^2\Rightarrow a+b+c\le3\)
\(\Rightarrow\dfrac{a}{\sqrt[3]{3a+bc}}\le\dfrac{a}{\sqrt[3]{a\left(a+b+c\right)+bc}}=\sqrt[3]{2}.\sqrt[3]{\dfrac{a}{a+b}.\dfrac{a}{a+c}.\dfrac{a}{2}}\le\dfrac{\sqrt[3]{2}}{3}\left(\dfrac{a}{a+b}+\dfrac{a}{a+c}+\dfrac{a}{2}\right)\)
Cộng vế và rút gọn:
\(E\le\dfrac{\sqrt[3]{2}}{3}\left(\dfrac{a}{a+b}+\dfrac{b}{a+b}+\dfrac{a}{a+c}+\dfrac{c}{a+c}+\dfrac{b}{b+c}+\dfrac{c}{b+c}+\dfrac{a+b+c}{2}\right)\)
\(E\le\dfrac{\sqrt[3]{2}}{3}\left(3+\dfrac{3}{2}\right)=\dfrac{3\sqrt[3]{2}}{2}\)
Áp dụng bđt \(\dfrac{9}{a+b+c}\le\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)
Khi đó \(\dfrac{9.ab}{a+3b+2c}=ab.\dfrac{9}{\left(a+c\right)+\left(c+b\right)+2b}\le\dfrac{ab}{a+c}+\dfrac{ab}{c+b}+\dfrac{a}{2}\)
Tương tự và cộng theo vế suy ra \(9A\le\dfrac{3\left(a+b+c\right)}{2}=9< =>A\le1\)
Dấu "=" xảy ra khi và chỉ khi a = b = c = 2
\(c+ab=\left(a+b+c\right)c+ab=ac+cb+c^2+ab=\left(a+c\right)\left(b+c\right)\)
Tương tự : \(a+bc=\left(a+b\right)\left(a+c\right);c+ab=\left(c+a\right)\left(c+b\right)\)
\(P=\sqrt{\frac{ab}{\left(c+a\right)\left(c+b\right)}}+\sqrt{\frac{bc}{\left(a+b\right)\left(a+c\right)}}+\sqrt{\frac{ca}{\left(b+c\right)\left(b+a\right)}}\)
áp dụng bất đẳng tức cauchy :
\(\sqrt{\frac{ab}{\left(c+a\right)\left(c+b\right)}}\le\frac{1}{2}\left(\frac{a}{c+a}+\frac{b}{c+b}\right)\)
\(\sqrt{\frac{bc}{\left(a+b\right)\left(a+c\right)}}\le\frac{1}{2}\left(\frac{b}{a+b}+\frac{c}{a+c}\right)\)
\(\sqrt{\frac{ca}{\left(b+c\right)\left(b+a\right)}}\le\frac{1}{2}\left(\frac{c}{b+c}+\frac{a}{b+a}\right)\)
cộng vế theo vế
\(\Rightarrow P\le\frac{1}{2}\left(\frac{a}{a+c}+\frac{b}{c+b}+\frac{b}{a+b}+\frac{c}{a+c}+\frac{c}{b+c}+\frac{a}{b+a}\right)\)
\(\Leftrightarrow P\le\frac{1}{2}\left(\frac{a+c}{a+c}+\frac{b+c}{b+c}+\frac{a+b}{a+b}\right)=\frac{1}{2}\cdot3=\frac{3}{2}\)
dấu "=" xảy ra khi a=b=c=1/3
Có a+b+c=1 => c=(a+b+c).c=ac+bc+c2
\(\Rightarrow c+ab=ac+bc+c^2+ab=a\left(b+c\right)+c\left(b+c\right)=\left(b+c\right)\left(a+c\right)\)
\(\Rightarrow\sqrt{\frac{ab}{c+ab}}=\sqrt{\frac{ab}{\left(c+a\right)\left(c+b\right)}}\le\frac{\frac{a}{c+b}+\frac{b}{c+b}}{2}\)
Tương tự ta có \(\hept{\begin{cases}a+bc=\left(a+b\right)\left(a+c\right)\\b+ac=\left(b+a\right)\left(b+c\right)\end{cases}\Leftrightarrow\hept{\begin{cases}\sqrt{\frac{bc}{a+bc}}=\sqrt{\frac{bc}{\left(a+b\right)\left(a+c\right)}}\le\frac{\frac{b}{a+b}+\frac{c}{a+c}}{2}\\\sqrt{\frac{ca}{b+ca}}=\sqrt{\frac{ca}{\left(b+c\right)\left(b+a\right)}}\le\frac{\frac{c}{b+c}+\frac{a}{b+a}}{2}\end{cases}}}\)
\(\Rightarrow P\le\frac{\frac{b}{a+b}+\frac{c}{c+a}+\frac{c}{b+c}+\frac{a}{a+b}+\frac{a}{c+a}+\frac{b}{c+b}}{2}\)\(=\frac{\frac{a+c}{a+c}+\frac{c+b}{c+b}+\frac{a+b}{a+b}}{2}=\frac{3}{2}\)
Dấu "=" xảy ra khi \(a=b=c=\frac{1}{3}\)
Áp dụng BĐT Cauchy-Schwarz ta có:
\(\dfrac{ab}{\sqrt{3c+ab}}=\dfrac{ab}{\sqrt{\left(a+b+c\right)c+ab}}=\dfrac{ab}{\sqrt{c^2+ab+bc+ca}}\)
\(=\dfrac{ab}{\sqrt{\left(a+c\right)\left(b+c\right)}}\le\dfrac{1}{2}\left(\dfrac{ab}{a+c}+\dfrac{ab}{b+c}\right)\)
Tương tự cho 2 BĐT còn lại rồi cộng theo vế:
\(P\le\dfrac{1}{2}\left(a+b+c\right)=\dfrac{3}{2}\)
\("="\Leftrightarrow a=b=c=1\)
tại sao dấu = xảy ra khi a=b=c=1