K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 2 2018

Hình như đề sai rùi bạn ơi hình như phải cm >= 3 chứ

1 tháng 2 2018

bạn giải thử

23 tháng 10 2018

Bài này là bài chốt trong đề thi hsg toán 9 cấp huyện năm nay của đức thọ đó!

23 tháng 10 2018

bạn vào Thư viện đề thi THCS Hoàng Xuân Hãn rồi bấm vào mục ở dưới dưới ak tên mục là

Đáp án đề thi hsg toán 9 huyện Đức Thọ năm  học 2018-2019 Đây là bài cuối của đề ak!

6 tháng 12 2019

\(\frac{a}{b+c-a}+\frac{b}{a+c-b}+\frac{c}{a+b-c}\)

\(=\frac{a^2}{ab+ca-a^2}+\frac{b^2}{ab+bc-b^2}+\frac{c^2}{ca+bc-c^2}\)

\(\ge\frac{\left(a+b+c\right)^2}{2ab+2bc+2ca-a^2-b^2-c^2}\)

\(\ge\frac{3\left(ab+bc+ca\right)}{2ab+2bc+2ca-ab-bc-ca}=3\)

6 tháng 12 2019

\(VT=\frac{2\left(a-b\right)^2}{\left(b+c-a\right)\left(c+a-b\right)}+\frac{2\left(b-c\right)^2}{\left(c+a-b\right)\left(a+b-c\right)}+\frac{2\left(a-c\right)^2}{\left(a+b-c\right)\left(b+c-a\right)}+3\ge3\)

1 tháng 11 2019

đề sai ở mẫu cuối nhé

đặt b + c - a = x ; a + c - b = y ; a + b - c = z

\(\Rightarrow a=\frac{y+z}{2};b=\frac{x+z}{2};c=\frac{x+y}{2}\)

\(\Rightarrow P=\frac{2\left(y+z\right)}{x}+\frac{9\left(x+z\right)}{2y}+\frac{8\left(x+y\right)}{z}=\frac{2y}{x}+\frac{9x}{2y}+\frac{2z}{x}+\frac{8x}{z}+\frac{9z}{2y}+\frac{8y}{z}\)

\(\ge6+8+12=26\)

1 tháng 11 2019

bài này dấu ' =" giải ra mệt lắm nên bạn tự giải

15 tháng 9 2015

Chú ý rằng \(\left(a-b\right)+\left(b-c\right)+\left(c-a\right)=0\to\) \(\frac{a-b}{a+b}+\frac{b-c}{b+c}+\frac{c-a}{c+a}=-\frac{a-b}{a+b}\cdot\frac{b-c}{b+c}\cdot\frac{c-a}{c+a}\)
Ta có \(\left|\left(a-b\right)\left(b-c\right)\left(c-a\right)\right|=\left|a-b\right|\cdot\left|b-c\right|\cdot\left|c-a\right|\). Theo bất đẳng thức tam giác, hiệu độ dài hai cạnh bé hơn cạnh còn lại. Vì vậy mà \(a>\left|b-c\right|,b>\left|c-a\right|,c>\left|a-b\right|\to\)\(\left|a-b\right|\cdot\left|b-c\right|\cdot\left|c-a\right|\)\(abc.\)

Do vậy mà \(\left|\frac{a-b}{a+b}+\frac{b-c}{b+c}+\frac{c-a}{c+a}\right|=\left|\frac{a-b}{a+b}\cdot\frac{b-c}{b+c}\cdot\frac{c-a}{c+a}\right|=\frac{\left|\left(a-b\right)\left(b-c\right)\left(c-a\right)\right|}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}<\frac{abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)
Mặt khác theo bất đẳng thức Cô-Si  ta có \(a+b\ge2\sqrt{ab},b+c\ge2\sqrt{bc},c+a\ge2\sqrt{ca}\to\)
\(\left|\frac{a-b}{a+b}+\frac{b-c}{b+c}+\frac{c-a}{c+a}\right|<\frac{abc}{2\sqrt{bc}\cdot2\sqrt{ca}\cdot2\sqrt{ab}}=\frac{1}{8}.\)  (ĐPCM).

30 tháng 8 2017

Do a,b,c là 3 cạnh tam giác nên \(a+b-c>0;b+c-a>0;c+a-b>0\)

Đặt \(x=b+c-a>0\)

      \(y=a+c-b>0\)

     \(z=a+b-c>0\)

\(\Rightarrow a=\frac{"y+z"}{2}\)

\(\Rightarrow b=\frac{"x+z"}{2}\)

\(\Rightarrow c=\frac{"x+y"}{2}\)

\(A=\frac{a}{"b+c-a"}+\frac{b}{"a+c-b"}+\frac{c}{"a+b-c"}\)

\(=\frac{"y+z"}{"2x"}+\frac{"x+z"}{"2y"}+\frac{"x+y"}{"2z"}\)

\(=\frac{1}{2}."\frac{x}{y}+\frac{y}{x}+\frac{x}{z}+\frac{z}{x}+\frac{y}{z}+\frac{z}{y}"\)

Áp dụng công thức bdt Cauchy cho 2 số :

\(\frac{x}{y}+\frac{y}{x}\ge2\)

\(\frac{x}{z}+\frac{z}{x}\ge2\)

\(\frac{y}{z}+\frac{z}{y}\ge2\)

Cộng 3 bdt trên, suy ra :

\("\frac{x}{y}+\frac{y}{x}+\frac{x}{z}+\frac{z}{x}+\frac{y}{z}+\frac{z}{y}"\ge6\)

\(\Rightarrow A\ge\frac{1}{2}.6=3\) "dpcm"

P/s: Nhớ thay thế dấu ngoặc kép thành dấu ngoặc đơn nhé

24 tháng 10 2016

Áp dụng BĐT \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\) , ta được : 

\(\frac{1}{a+b-c}+\frac{1}{b+c-a}\ge\frac{4}{2b}=\frac{2}{b}\)

\(\frac{1}{b+c-a}+\frac{1}{c+a-b}\ge\frac{4}{2c}=\frac{2}{c}\)

\(\frac{1}{a+b-c}+\frac{1}{c+a-b}\ge\frac{4}{2a}=\frac{2}{a}\)

Cộng các BĐT trên theo vế : \(2\left(\frac{1}{a+b-c}+\frac{1}{b+c-a}+\frac{1}{c+a-b}\right)\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(\Rightarrow\frac{1}{a+b-c}+\frac{1}{b+c-a}+\frac{1}{c+a-b}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

Dấu "=" xảy ra khi a = b = c => Tam giác đó là tam giác đều.

24 tháng 10 2016

Cho a,b.c là 3 cạnh 1 tam giác. CMR: 1 / a+b−c + 1 / b+c−a + 1 / c+a−b ≥ 1 / a +1 / b +1 / c 

Áp dụng BĐT 1 / x +1 / y ≥ 4 / x+y  , ta được : 

1 / a+b−c + 1 / b+c−a ≥ 4 / 2b = 2 / b 

1 / b+c−a +1 / c+a−b ≥ 4 / 2c = 2 / c 

1 / a+b−c +1 / c+a−b ≥ 4 / 2a = 2 / a 

Cộng các BĐT trên theo vế : 2( 1 / a+b−c + 1 / b+c−a + 1 / c+a−b ) ≥ 2( 1 / a + 1 / b + 1 / c )

⇒ 1 / a+b−c + 1 / b+c−a + 1 / c+a−b  ≥ 1 / a + 1 / b + 1 / c 

Dấu "=" xảy ra khi a = b = c => Tam giác đó là tam giác đều.

27 tháng 11 2019

Áp dungj BĐt Cauchy - Schwarz :
\(\frac{1}{p-a}+\frac{1}{p-b}\ge\frac{4}{2p-a-b}=\frac{4}{c}\)

\(\frac{1}{p-b}+\frac{1}{p-c}\ge\frac{4}{2p-b-c}=\frac{4}{a}\)

\(\frac{1}{p-b}+\frac{1}{p-c}\ge\frac{4}{2p-b-c}=\frac{4}{a}\)

Cộng theo vế và thu gọn ta được :
\(\frac{1}{p-a}+\frac{1}{p-b}+\frac{1}{p-c}\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

Ta có : đpcm

Dấu " = " xảy ra khi \(a=b=c\)

27 tháng 11 2019

Ta có

\(P=\frac{a+b+c}{2}\Rightarrow2p=a+b+c\)

áp dụng bđt Cauchy-Schwarz ta có

\(\frac{1}{p-a}+\frac{1}{p-b}\ge\frac{4}{p-a+p-b}=\frac{4}{2p-a-b}=\frac{4}{a+b+c-a-b}=\frac{4}{c}\left(1\right)\)

C/m tương tự ta có

\(\frac{1}{p-b}+\frac{1}{p-c}\ge\frac{4}{a}\left(2\right)\)

\(\frac{1}{p-a}+\frac{1}{p-c}\ge\frac{4}{b}\left(3\right)\)

Cộng vế theo vế (1) (2) và (3)   => đpcm