Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Gọi AD là tia phân giác của \(\widehat{BAC}\left(D\in BC\right)\)
Qua B vẽ đường thẳng song song với AD cắt AC tại M
Ta có: \(\widehat{ABM}=\widehat{BAD};\widehat{AMB}=\widehat{DAC}\)
Mà \(\widehat{BAD}=\widehat{DAC}\)(vì AD là phân giác \(\widehat{BAC}\))
=> \(\widehat{AMB}=\widehat{ABM}\) nên \(\Delta\)ABM cân tại A)
Từ đó có AM=AB=c. \(\Delta\)ABM có: MB<AM+AB=2c
\(\Delta\)ADC có: MB//AD, nên \(\frac{AD}{AB}=\frac{AC}{MC}\) (hệ quả định lý Ta-let)
do đó \(AD=\frac{AC}{MC}\cdot MB< \frac{AC}{AC+AM}\cdot2bc=\frac{2bc}{b+c}\)
b) Cmtt câu a) ta có: \(\hept{\begin{cases}y< \frac{2ca}{c+a}\\z< \frac{2ab}{a+b}\end{cases}}\)
Do đó: \(\hept{\begin{cases}\frac{1}{x}>\frac{1}{2}\left(\frac{1}{b}+\frac{1}{c}\right)\\\frac{1}{y}>\frac{1}{2}\left(\frac{1}{a}+\frac{1}{c}\right)\\\frac{1}{z}>\frac{1}{2}\left(\frac{1}{b}+\frac{1}{a}\right)\end{cases}\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}>\frac{1}{a}+\frac{1}{b}+\frac{1}{c}}\)
hình bạn tự vẽ
Tam giác ABC tương ứng với a,b,c độ dài các cạnh
từ B dựng đường thẳng song song với tia phân giác AD cắt đường thẳng CA tại E,ta có AE = AB = c
Do AD//BE nên \(\frac{x}{BE}=\frac{b}{b+c}\Rightarrow x=\frac{b}{b+c}.BE\)
Trong tam giác ABE ta có : EB < AB + AE = 2c
vì thế \(x< \frac{2bc}{b+c}\Rightarrow\frac{1}{x}>\frac{1}{2}\left(\frac{1}{b}+\frac{1}{c}\right)\)
Tương tự : \(\frac{1}{y}>\frac{1}{2}\left(\frac{1}{c}+\frac{1}{a}\right)\); \(\frac{1}{z}>\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\)
Cộng lại ta được đpcm
A B C E D b c x b
Giả sử AB=c,BC=a,CA=b; đường phân giác AD có độ dài x. Qua C kẻ đường thẳng song song với AD cắt tia BA tại E.
Dễ thấy: ^ACE = ^AEC (=^BAC/2) => \(\Delta\)ACE cân tại A => AC=AE=b => CE < 2b (BĐT tam giác)
Theo hệ quả ĐL Thales: \(\frac{AD}{CE}=\frac{BA}{BE}\)(Do AD // CE) hay \(\frac{x}{CE}=\frac{c}{b+c}\Rightarrow x=\frac{c.CE}{b+c}\)
Mà BE < 2b nên \(x< \frac{2bc}{b+c}\). Tương tự thì \(y< \frac{2ca}{c+a};z< \frac{2ab}{a+b}\)
\(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}>\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)+\frac{1}{2}\left(\frac{1}{b}+\frac{1}{c}\right)+\frac{1}{2}\left(\frac{1}{c}+\frac{1}{a}\right)\)
\(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}>\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\) (đpcm).
A E B D C x b c c A
Từ B kẻ đường thẳng song song với đường phân giác AD, cắt CA ở E. Tam giác ABE cân ở A nên AE = AB = c
\(\Rightarrow\)CE = CA + AE = b + c
Do đó AD // BE nên ta có :
\(\frac{AD}{BE}=\frac{CA}{CE}\)hay \(\frac{x}{BE}=\frac{b}{b+c}\), do đó \(x=\frac{b}{b+c}.BE\)
Mà BE < AB + AC < 2c
\(\Rightarrow\) \(x< \frac{2bc}{b+c}\)hay \(\frac{1}{x}>\frac{1}{2}\left(\frac{1}{b}+\frac{1}{c}\right)\)( 1 )
Tương tự ta có : \(\frac{1}{y}>\frac{1}{2}\left(\frac{1}{c}+\frac{1}{a}\right)\)( 2 )
ta cũng có : \(\frac{1}{z}>\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\)( 3 )
Cộng từng vế của ( 1 ) ; ( 2 ) ; ( 3 ) ta có :
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}>\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
Vậy \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}>\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\left(ĐPCM\right)\)
Hình mình vẽ hơi xấu tí thông cảm
a) Chứng minh được BĐT \(\frac{1}{a+b}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)\)(*)
Dấu "=" xảy ra <=> a=b
Áp dụng BĐT (*) vào bài toán ta có:
\(\hept{\begin{cases}\frac{1}{2x+y+z}=\frac{1}{x+y+x+y}\le\frac{1}{4}\left(\frac{1}{x+y}+\frac{1}{x+z}\right)\\\frac{1}{x+2y+z}=\frac{1}{x+y+y+z}\le\frac{1}{4}\left(\frac{1}{x+y}+\frac{1}{y+z}\right)\\\frac{1}{x+y+2z}=\frac{1}{x+y+z+z}\le\frac{1}{4}\left(\frac{1}{x+z}+\frac{1}{y+z}\right)\end{cases}}\)
\(\Rightarrow\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\le\frac{1}{4}\cdot2\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)\)
Tiếp tục áp dụng BĐT (*) ta có:
\(\frac{1}{x+y}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right);\frac{1}{y+z}\le\frac{1}{4}\left(\frac{1}{y}+\frac{1}{z}\right);\frac{1}{z+x}\le\frac{1}{4}\left(\frac{1}{z}+\frac{1}{x}\right)\)
\(\Rightarrow\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\le\frac{1}{4}\cdot2\cdot\frac{1}{4}\cdot2\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=1\)
\(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\le1\)
Dấu "=" xảy ra <=> \(x=y=z=\frac{3}{4}\)
b) áp dụng bđt \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)ta có:
\(\hept{\begin{cases}\frac{1}{a+b-c}+\frac{1}{b+c-a}\ge\frac{4}{a+b-c+b+c-a}=\frac{4}{2b}=\frac{2}{b}\\\frac{1}{b+c-a}+\frac{1}{a+c-b}\ge\frac{4}{b+c-a+a+c-b}=\frac{4}{2c}=\frac{2}{c}\\\frac{1}{a+b-c}+\frac{1}{a+c-b}\ge\frac{4}{a+b-c+a+c-b}=\frac{4}{2a}=\frac{2}{a}\end{cases}}\)
Cộng theo vế 3 BĐT ta có:
\(2VT\ge\frac{2}{a}+\frac{2}{b}+\frac{2}{c}=2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=2VP\)
\(\Rightarrow VT\ge VP\)
Đẳng thức xảy ra <=> a=b=c
\(\frac{1}{x^2+yz}+\frac{1}{y^2+xz}+\frac{1}{z^2+xy}\)
\(\le\frac{1}{2\sqrt{x^2yz}}+\frac{1}{2\sqrt{y^2xz}}+\frac{1}{2\sqrt{z^2xy}}=\frac{\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{z}}}{2\sqrt{xyz}}\)
\(=\frac{\sqrt{yz}+\sqrt{xz}+\sqrt{xy}}{2xyz}\le\frac{\frac{x+y+x+z+x+y}{2}}{2xyz}=\frac{x+y+z}{2xyz}\)
Dấu '=' xảy ra <=> x=y=z
Xét tam giác ABC có ba cạnh BC = a, CA = b, AB = c. Phân giác của các góc A, B, C lần lượt là AD = x, BE = y, CF = z.
Kẻ DM // AB \((M\in AC)\).
Ta có \(\widehat{ADM}=\widehat{BAD}=\widehat{MAD}\Rightarrow\) Tam giác AMD cân tại M.
Do đó AM = MD.
Áp dụng định lý Thales với DM // AB ta có:
\(\dfrac{MD}{AB}=\dfrac{CM}{AC}=1-\dfrac{AM}{AC}=1-\dfrac{DM}{AC}\Rightarrow\dfrac{MD}{AB}+\dfrac{MD}{AC}=1\Rightarrow\dfrac{1}{MD}=\dfrac{1}{AB}+\dfrac{1}{AC}=\dfrac{1}{b}+\dfrac{1}{c}\).
Mặt khác theo bất đẳng thức tam giác ta có \(x=AD< AM+MD=2MD\Rightarrow MD>\dfrac{x}{2}\Rightarrow\dfrac{1}{MD}< \dfrac{2}{x}\Rightarrow\dfrac{1}{b}+\dfrac{1}{c}< \dfrac{2}{x}\).
Tương tự \(\dfrac{1}{c}+\dfrac{1}{a}< \dfrac{2}{y};\dfrac{1}{a}+\dfrac{1}{b}< \dfrac{2}{z}\).
Cộng vế với vế của các bđt trên rồi rút gọn ta có đpcm.