K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 9 2020

Theo BĐT tam giác có :

\(a+b>c\)

\(\rightarrow\left(a+b\right)^3>c^3\)

\(\rightarrow a^3+b^3+3ab.\left(a+b\right)>c^3\)

\(\rightarrow a^3+b^3+3ab.c>c^3\)

2 tháng 9 2015

1, n có dạng 2k+1(n\(\in N\)) Ta có: 

  \(n^2+4n+3=\left(2k+1\right)^2+4\left(2k+1\right)+3\) 

                                 \(=4k^2+4k+1+8k+4+3\) 

                                 \(=4k^2+12k+8\) 

                                 \(=4\left(k^2+3k+2\right)\) 

                                \(=4\left(k+1\right)\left(k+2\right)\) 

vì (k+1)(k+2) là tích 2 số tự nhiên liên tiếp \(\Rightarrow\left(k+1\right)\left(k+2\right)\) chia hết cho 2  

 mà 4(k+1)(k+2)chia hết cho 4 

\(\Rightarrow n^2+4n+3\) chia hết cho 8 với mọi n  là số lẻ. 

2, ta có:  

        \(a^3+b^3+c^3=\left(a+b+c\right)\left(ab-bc-ac\right)+3abc\) 

 \(\Rightarrow a^3+b^3+c^3=3abc\) (vì a+b+c=0)

a+b+c=0

=>(a+b+c)3=0

=>a3+b3+c3+3a2b+3ab2+3b2c+3bc2+3a2c+3ac2+6abc=0

=>a3+b3+c3+(3a2b+3ab2+3abc)+(3b2c+3bc2+3abc)+(3a2c+3ac2+3abc)-3abc=0

=>a3+b3+c3+3ab(a+b+c)+3bc(a+b+c)+3ac(a+b+c)=3abc

Do a+b+c=0

=>a3+b3+c3=3abc(ĐPCM)

14 tháng 7 2019

Ta thấy trong tam giác tổng độ dài hai cạnh luôn lớn hơn cạnh còn lại

Ta có: \(a+b>c\)

\(\Rightarrow\left(a+b\right)^2>c^2\)

\(\Rightarrow c\left(a+b\right)^2>c^3\)

Tương tự: 

\(a\left(b+c\right)^2>a^3\)

\(b\left(a+c\right)^2>b^3\)

do đó \(a\left(b+c\right)^2+b\left(a+c\right)^2+c\left(a+b\right)^2>a^3+b^3+c^3\left(ĐPCM\right)\)

Ta có:

\(a\left(b-c\right)^2+b\left(c-a\right)^2+c\left(a+b\right)^2-a^3-b^3-c^3\)

\(=\left[a\left(b-c\right)^2-a^3\right]+\left[b\left(c-a\right)^2-b^3\right]+\left[c\left(a+b\right)^2-c^3\right]\)

\(=a\left[\left(b-c\right)^2-a^2\right]+b\left[\left(c-a\right)^2-b^2\right]+c\left[\left(a+b\right)^2-c^2\right]\)

\(=a\left(b-c-a\right)\left(b-c+a\right)+b\left(c-a-b\right)\left(c-a+b\right)+c\left(a+b-c\right)\left(a+b+c\right)\)

\(=a\left(b-c-a\right)\left(b-c+a\right)-b\left(c-a-b\right)\left(a+b-c\right)+c\left(a+b-c\right)\left(a+b+c\right)\)

\(=\left(a+b-c\right)\left[a\left(b-c-a\right)-b\left(c-a+b\right)+c\left(a+b+c\right)\right]\)

\(=\left(a+b-c\right)\left(ab-ac-a^2-bc+ab-b^2+ca+cb+c^2\right)\)

\(=\left(a+b-c\right)\left(2ab-a^2-b^2+c^2\right)\)

\(=\left(a+b-c\right)\left[c^2-\left(a^2-2ab+b^2\right)\right]\)

\(=\left(a+b-c\right)\left[c^2-\left(a-b\right)^2\right]\)

\(=\left(a+b-c\right)\left(c-a+b\right)\left(c+a-b\right)\)

vì a, b, c là cạnh của 1 tam giác

\(\Rightarrow\hept{\begin{cases}a+b-c>0\\c-a+b>0\\c+a-b>0\end{cases}}\)

\(\Rightarrow a\left(b-c\right)^2+b\left(c-a\right)^2+c\left(a+b\right)^2-a^3-b^3-c^3>0\)

\(\Rightarrow a\left(b-c\right)^2+b\left(c-a\right)^2+c\left(a+b\right)^2>a^3+b^3+c^3\)\(\left(đpcm\right)\)