K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 11 2017

Ta có: \(\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{b+a}\ge\frac{a+b+c}{2}\)

Áp dụng bất đẳng thức AM-GM cho vế VT và VP:

\(VT=\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}\ge3\sqrt[3]{\frac{a^2b^2c^2}{8abc}}=3\sqrt[3]{\frac{abc}{8}}\)      (1)

\(VP=\frac{a+b+c}{2}\Leftrightarrow\frac{a}{2}+\frac{b}{2}+\frac{c}{2}\ge3\sqrt[3]{\frac{abc}{8}}\) (2)

Từ (1) và (2) suy ra ĐPCM

10 tháng 7 2019

Bài 1: Áp dụng BĐT Cauchy cho 3 số dương:

\(VT\ge3\sqrt[3]{\frac{\left(b+c\right)\left(c+a\right)\left(a+b\right)}{abc}}\ge3\sqrt[3]{\frac{8abc}{abc}}=6\) (đpcm)

Giải phần dấu "=" ra ta được a = b =c

Bài 2: Đặt \(a+b=x;b+c=y;c+a=z\)

Suy ra \(a=\frac{x-y+z}{2};b=\frac{x+y-z}{2};c=\frac{y+z-x}{2}\)

Suy ra cần chứng minh \(\frac{x-y+z}{2y}+\frac{x+y-z}{2z}+\frac{y+z-x}{2x}\ge\frac{3}{2}\)

\(\Leftrightarrow\frac{x+z}{2y}+\frac{x+y}{2z}+\frac{y+z}{2x}\ge3\)

\(\Leftrightarrow\frac{x+z}{y}+\frac{x+y}{z}+\frac{y+z}{x}\ge6\)

Bài toán đúng theo kết quả câu 1.

18 tháng 7 2020

Mẫu không âm+ quy đồng

\(\frac{1+a+b}{2}\ge\frac{1+a+b+ab}{2+a+b}\)(1)

<=> \(2+3\left(a+b\right)+\left(a+b\right)^2\ge2+2a+2b+2ab\)

<=> \(a^2+b^2+a+b\ge0\) luôn đúng vì a; b không âm 

Do đó  (1) đúng 

Dấu "=" xảy ra <=> a = b = 0

18 tháng 9 2015

a)Bạn đặt A = a/ (1 + a^2). => A + a^2A = a => a^2A - a + A = 0. ta có delta = 1 - 4A^2 ( gọi ẩn số là a). => để pt có nghiệm <=> 1 - 4A^2 >= 0 => để phương trình có nghiệm => 1 - 4A^2 >= 0 => 1 >= 4A^2 => A =< 1/2. => max A = 1/2. bạn giải tương tự B = b/(1+b^2), C = c/(1 + c^2) rồi cộng vào nhau là ra ngay thôi. Đây là cách giải bằng delta. 

b)bạn có (a^2 - b^2)/c = ((a+b)(a-b))/c >= (c + c)(a-b)/c = 2(a - b). Bạn có c =< b ( theo đề bài) = > c + b =< 2b => (c + b) =<2b => (c + b)/b <= 2 => (c + b)/a <= 2. từ đó ta có (c^2 - b^2)/a = (c -b )(c + b)/a >= 2(c - b).

chứng minh tương tự:(a + c)/b > 1 => (a^2 - c^2)/b >= a - c.( sr ngại gõ lắm) => cộng 3 vế ta được đpcm

24 tháng 8 2015

BĐT cần chứng minh <=> \(\left(a+b+c\right)\left(\frac{b}{a^2}+\frac{c}{b^2}+\frac{a}{c^2}\right)\ge9\)

Áp dụng BĐT Cauchy 3 số ta có: \(\left(a+b+c\right)\left(\frac{b}{a^2}+\frac{c}{b^2}+\frac{a}{c^2}\right)\ge3\sqrt[3]{abc}.3.\sqrt[3]{\frac{b}{a^2}.\frac{c}{b^2}.\frac{a}{c^2}}=9.\sqrt[3]{abc}.\sqrt[3]{\frac{1}{abc}}=9\)

Dấu "=" xảy ra khi a = b = c

10 tháng 7 2019

Bài 1: \(a+\frac{1}{b\left(a-b\right)}=\left(a-b\right)+b+\frac{1}{b\left(a-b\right)}\)

Áp dụng BĐT Cauchy cho 3 số dương ta thu được đpcm (mình làm ở đâu đó rồi mà:)

Dấu "=" xảy ra khi a =2; b =1 (tự giải ra)

Bài 2: Thêm đk a,b,c >0.

Theo BĐT Cauchy \(\frac{a^2}{b^2}+\frac{b^2}{c^2}\ge2\sqrt{\frac{a^2}{c^2}}=\frac{2a}{c}\). Tương tự với hai cặp còn lại và cộng theo vế ròi 6chia cho 2 hai có đpcm.

Bài 3: Nó sao sao ấy ta?

30 tháng 9 2016

Bài 1. Từ giả thiết suy ra 1-a = b+c và áp dụng \(\left(x+y\right)^2\ge4xy\) 

Ta có : \(4\left(1-a\right)\left(1-b\right)\left(1-c\right)=4\left(b+c\right)\left(1-c\right)\left(1-b\right)\le\left[\left(b+c\right)+\left(1-c\right)\right]^2\left(1-b\right)\)

\(=\left(b+1\right)^2\left(1-b\right)=\left(b+1\right)\left(1-b^2\right)=-b^2\left(b+1\right)+\left(b+1\right)\le b+1=a+2b+c\)

22 tháng 1 2020

Áp dụng bất đẳng thức AM - GM ta có :

\(a-\frac{a^2}{a+b^2}=\frac{ab^2}{a+b^2}\le\frac{ab^2}{2b\sqrt{a}}=\frac{b\sqrt{a}}{2}\)

Tương tự cho các BĐT còn lai cũng có : 

\(b-\frac{b^2}{b+c^2}\le\frac{c\sqrt{b}}{2};c-\frac{c^2}{c+a^2}\le\frac{a\sqrt{c}}{2}\)

Cộng theo vế các BĐT trên :
\(\frac{a^2}{a+b^2}+\frac{b^2}{b+c^2}+\frac{c^2}{c+a^2}\ge3-\frac{1}{2}\left(b\sqrt{a}+c\sqrt{b}+a\sqrt{c}\right)\)

\(\ge3-\frac{1}{2}\sqrt{\left(a+b+c\right)\left(ab+bc+ca\right)}\)

\(\ge3-\frac{1}{2}\sqrt{\left(a+b+c\right).\frac{\left(a+b+c\right)^2}{3}}=3-\frac{3}{2}=\frac{3}{2}\)

Đẳng thức xảy ra khi \(a=b=c=1\)

Chúc bạn học tốt !!!

13 tháng 10 2018

Ta có: \(\frac{a}{1+b^2}=\frac{a+ab^2-ab^2}{1+b^2}=\frac{a+ab^2}{1+b^2}-\frac{ab^2}{1+b^2}=a-\frac{ab^2}{1+b^2}\ge a-\frac{ab^2}{2b}=a-\frac{ab}{2}\)

Tương tự ta có: \(\frac{b}{1+c^2}\ge b-\frac{bc}{2}\);  \(\frac{c}{1+a^2}\ge c-\frac{ca}{2}\)

Cộng theo vế 3 BĐT trên,ta được: \(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\ge3-\frac{1}{2}\left(ab+bc+ca\right)\)

Do \(ab+bc+ca\ge\frac{\left(a+b+c\right)^2}{3}\) (dấu "=" xảy ra khi a = b = c) nên ta có:)

\(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\ge3-\frac{1}{2}\left(ab+bc+ca\right)\ge3-\frac{1}{2}.\frac{\left(a+b+c\right)^2}{3}=\frac{3}{2}^{\left(đpcm\right)}\)