Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(A=a\left(a^2-bc\right)+b\left(b^2-ac\right)+c\left(c^2-ab\right)=0\)
\(\Rightarrow A=a^3+b^3+c^3-3abc=0\) \(\Rightarrow A=\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc=0\)
\(\Rightarrow A=\left(a+b+c\right)\left[\left(a+b\right)^2-c\left(a+b\right)+c^2\right]-3ab\left(a+b+c\right)=0\)
\(\Rightarrow A=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)
Vì \(a+b+c\ne0\Rightarrow a^2+b^2+c^2-ab-ac-bc=0\)
Xét \(M=a^2+b^2+c^2-ab-ac-bc=0\)
\(\Rightarrow2M=2a^2+2b^2+2c^2-2ab-2ac-2bc=0\)
\(\Rightarrow2M=\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
Vì \(\left(a-b\right)^2\ge0;\left(b-c\right)^2\ge0;\left(c-a\right)^2\ge0\forall a,b,c\)
\(\Rightarrow a-b=0;b-c=0;c-a=0\) \(\Rightarrow a=b=c\)
\(\Rightarrow P=\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}=1+1+1=3\)
\(\dfrac{bc}{a}+\dfrac{ca}{b}+\dfrac{ab}{c}=a+b+c\)
\(\Leftrightarrow\dfrac{abc}{a^2}+\dfrac{abc}{b^2}+\dfrac{abc}{c^2}=a+b+c\)
\(\Leftrightarrow\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}=\dfrac{a+b+c}{abc}=\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ac}\)
\(\Leftrightarrow\left(\dfrac{1}{a}-\dfrac{1}{b}\right)^2+\left(\dfrac{1}{b}-\dfrac{1}{c}\right)^2+\left(\dfrac{1}{c}-\dfrac{1}{a}\right)^2=0\)
\(\Leftrightarrow a=b=c\)
Thay vào A r tính thôi
\(\left(1+\dfrac{b}{a}\right)\left(1+\dfrac{c}{b}\right)\left(1+\dfrac{a}{c}\right)=8\)
\(\Leftrightarrow\dfrac{a+b}{a}\times\dfrac{b+c}{b}\times\dfrac{a+c}{c}=8\)
\(\Leftrightarrow\left(a+b\right)\left(a+c\right)\left(b+c\right)=8abc\)
~*~*~*~*~
\(\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{a+c}\)
\(=\dfrac{3}{4}+\dfrac{ab}{\left(a+b\right)\left(b+c\right)}+\dfrac{bc}{\left(b+c\right)\left(c+a\right)}+\dfrac{ac}{\left(c+a\right)\left(a+b\right)}\) (1)
\(\Leftrightarrow\dfrac{a}{a+b}-\dfrac{ab}{\left(a+b\right)\left(b+c\right)}+\dfrac{b}{b+c}-\dfrac{bc}{\left(b+c\right)\left(c+a\right)}+\dfrac{c}{c+a}-\dfrac{ac}{\left(c+a\right)\left(a+b\right)}\)
\(=\dfrac{3}{4}\)
\(\Leftrightarrow\dfrac{a}{a+b}\left(1-\dfrac{b}{b+c}\right)+\dfrac{b}{b+c}\left(1-\dfrac{c}{c+a}\right)+\dfrac{c}{a+c}\left(1-\dfrac{a}{a+b}\right)\)
\(=\dfrac{3}{4}\)
\(\Leftrightarrow\dfrac{a}{a+b}\times\dfrac{c}{b+c}+\dfrac{b}{b+c}\times\dfrac{a}{a+c}+\dfrac{c}{a+c}\times\dfrac{b}{a+b}\)
\(=\dfrac{3}{4}\)
\(\Leftrightarrow\dfrac{ac\left(a+c\right)+ab\left(a+b\right)+bc\left(b+c\right)}{\left(a+c\right)\left(b+c\right)\left(a+b\right)}=\dfrac{3}{4}\)
\(\Leftrightarrow ac\left(a+c\right)+ab\left(a+b\right)+bc\left(b+c\right)=\dfrac{3}{4}\times8abc\)
\(\Leftrightarrow ac\left(a+c\right)+ab\left(a+b\right)+bc\left(b+c\right)+2abc=8abc\)
\(\Leftrightarrow\left(a+b\right)\left(a+c\right)\left(b+c\right)=8abc\) luôn đúng
=> (1) đúng
Bạn cũng có thể giải bằng cách đặt \(x=\dfrac{a}{a+b};y=\dfrac{b}{b+c};z=\dfrac{c}{a+c}\).
\(T=\dfrac{a^2}{a^2-b^2-c^2}+\dfrac{b^2}{b^2-c^2-a^2}+\dfrac{c^2}{c^2-a^2-b^2}\)
Do a+b+c =0 nên => a+b = (-c) => \(\left(a+b\right)^2=\left(-c\right)^2=>a^2+2ab+b^2=c^2\)
\(=>a^2+b^2-c^2=-2ab\)
Làm tương tự trên ta có : \(b^2-c^2-a^2=2ac;\)
\(a^2-b^2-c^2=2bc;\)
\(=>T=\dfrac{a^2}{2bc}+\dfrac{b^2}{2ac}+\dfrac{c^2}{2ab}=\dfrac{a^3+b^3+c^3}{2abc}\)
Với a+b+c = 0 thì \(a^3+b^3+c^3=3abc\) (bạn tự chứng minh hằng đẳng thức mở rộng nhé);
\(=>T=\dfrac{3abc}{2abc}=\dfrac{3}{2}=1,5\)
CHÚC BẠN HỌC TỐT.....
oh no bài thứ nhất là dạng chứng minh cs đúng ko ,
ko thể nào là dạng tìm a,b,c đc-.-
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a+b-c}{c}=\dfrac{b+c-a}{a}=\dfrac{c+a-b}{b}=\dfrac{a+b-c+b+c-a+c+a-b}{c+a+b}=\dfrac{a+b+c}{a+b+c}=1\)
Do đó:
\(\left\{{}\begin{matrix}a+b-c=c\\b+c-a=a\\c+a-b=b\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a+b=2c\\b+c=2a\\c+a=2b\end{matrix}\right.\)
Thay a+b=2c;b+c=2a và c+a=2b vào biểu thức \(P=\dfrac{\left(a+b\right)\left(b+c\right)\left(a+b\right)}{abc}\), ta được:
\(P=\dfrac{2a\cdot2b\cdot2c}{abc}=\dfrac{8abc}{abc}=8\)
Vậy: P=8
Ta có: \(\dfrac{a+b-c}{c}=\dfrac{b+c-a}{a}=\dfrac{c+a-b}{b}\) = \(\dfrac{a+b-c+b+c-a+c+a-b}{a+b+c}\) (t/c dãy tỉ số bằng nhau)
hay \(\dfrac{a+b-c}{c}=\dfrac{b+c-a}{a}=\dfrac{c+a-b}{b}=1\) (1)
Ta cũng có: \(\dfrac{a+b-c}{c}=\dfrac{b+c-a}{a}=\dfrac{a+b-c+b+c-a}{a+c}\) (t/c dãy tỉ số bằng nhau)
hay \(\dfrac{a+b-c}{c}=\dfrac{2b}{a+c}\) (2)
Từ (1) và (2) \(\Rightarrow\) \(\dfrac{2b}{a+c}=1\) \(\Leftrightarrow\) a + c = 2b (*)
Tương tự ta cũng có: a + b = 2c (**); b + c = 2a (***)
Thay (*); (**); (***) vào P ta được:
P = \(\dfrac{2a.2b.2c}{abc}\) = 2.2.2 = 8
Vậy P = 8
Chúc bn học tốt!