K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
1 tháng 5 2021

\(a+b+c=\sqrt{6063}\Leftrightarrow\dfrac{a}{\sqrt{2021}}+\dfrac{b}{\sqrt{2021}}+\dfrac{c}{\sqrt{2021}}=\sqrt{3}\)

Đặt \(\left(\dfrac{a}{\sqrt{2021}};\dfrac{b}{\sqrt{2021}};\dfrac{c}{\sqrt{2021}}\right)=\left(x;y;z\right)\Rightarrow x+y+z=\sqrt{3}\)

\(P=\dfrac{2x}{\sqrt{2x^2+1}}+\dfrac{2y}{\sqrt{2y^2+1}}+\dfrac{2z}{\sqrt{2z^2+1}}\)

Ta có đánh giá:

\(\dfrac{x}{\sqrt{2x^2+1}}\le\dfrac{3\sqrt{15}x+2\sqrt{5}}{25}\)

Thật vậy, BĐT tương đương:

\(\left(\sqrt{3}x-1\right)^2\left(9x^2+10\sqrt{3}x+2\right)\ge0\) (luôn đúng)

Tương tự và cộng lại:

\(P\le\dfrac{6\sqrt{15}\left(x+y+z\right)+12\sqrt{5}}{25}=\dfrac{6\sqrt{5}}{5}\)

AH
Akai Haruma
Giáo viên
7 tháng 1 2019

Lời giải:

Áp dụng BĐT AM-GM:

\(P=\frac{\sqrt{ab}}{(a+c)+(b+c)}+\frac{\sqrt{bc}}{(b+a)+(c+a)}+\frac{\sqrt{ca}}{(c+b)+(a+b)}\)

\(\leq \underbrace{\frac{\sqrt{ab}}{2\sqrt{(a+c)(b+c)}}+\frac{\sqrt{bc}}{2\sqrt{(b+a)(c+a)}}+\frac{\sqrt{ca}}{2\sqrt{(c+b)(a+b)}}}_{M}(*)\)

Xét:

\(M=\frac{1}{2}\frac{\sqrt{ab(a+b)}+\sqrt{bc(b+c)}+\sqrt{ca(c+a)}}{\sqrt{(a+b)(b+c)(c+a)}}(1)\)

Theo BĐT Bunhiacopxky và AM-GM:

\((\sqrt{ab(a+b)}+\sqrt{bc(b+c)}+\sqrt{ca(c+a)})^2\leq (ab+bc+ac)(a+b+b+c+c+a)\)

\(=2(ab+bc+ac)(a+b+c)=2[(a+b)(b+c)(c+a)+abc]\)

\(\leq 2[(a+b)(b+c)(c+a)+\frac{(a+b)(b+c)(c+a)}{8}]=\frac{9}{4}(a+b)(b+c)(c+a)\)

\(\Rightarrow \sqrt{ab(a+b)}+\sqrt{bc(b+c)}+\sqrt{ca(c+a)}\leq \frac{3}{2}\sqrt{(a+b)(b+c)(c+a)}(2)\)

Từ \((1);(2)\Rightarrow M\leq \frac{1}{2}.\frac{3}{2}=\frac{3}{4}(**)\)

Từ \((*); (**)\Rightarrow P\leq M\leq \frac{3}{4}\)

Vậy \(P_{\max}=\frac{3}{4}\Leftrightarrow a=b=c\)

8 tháng 1 2019

em cảm ơn cô

30 tháng 12 2021

\(\dfrac{ab}{\sqrt{ab+2c}}=\dfrac{ab}{\sqrt{ab+\left(a+b+c\right)c}}=\dfrac{ab}{\sqrt{\left(a+c\right)\left(b+c\right)}}=ab\cdot\sqrt{\dfrac{1}{a+b}\cdot\dfrac{1}{b+c}}\le ab\cdot\dfrac{1}{2}\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}\right)=\dfrac{1}{2}\left(\dfrac{ab}{a+b}+\dfrac{ab}{b+c}\right)\)

CMTT: \(\dfrac{bc}{\sqrt{bc+2a}}\le\dfrac{1}{2}\left(\dfrac{bc}{a+b}+\dfrac{bc}{a+c}\right);\dfrac{ac}{\sqrt{ac+2b}}\le\dfrac{1}{2}\left(\dfrac{ac}{b+c}+\dfrac{ac}{b+a}\right)\)

\(\Leftrightarrow P\le\dfrac{1}{2}\left(\dfrac{ab}{c+a}+\dfrac{ab}{c+b}+\dfrac{bc}{b+a}+\dfrac{bc}{c+a}+\dfrac{ac}{b+c}+\dfrac{ac}{b+c}\right)\\ \Leftrightarrow P\le\dfrac{1}{2}\left[\dfrac{b\left(a+c\right)}{a+c}+\dfrac{a\left(b+c\right)}{b+c}+\dfrac{c\left(a+b\right)}{a+b}\right]=\dfrac{1}{2}\left(a+b+c\right)=1\)

Dấu \("="\Leftrightarrow a=b=c=\dfrac{2}{3}\)

30 tháng 12 2021

Anh ơi! Anh giúp em thêm BĐT ạ! 

https://hoc24.vn/cau-hoi/cho-xyz-0-thoa-man-dfrac1xdfrac1ydfrac1z3-tim-gtln-cua-bieu-thuc-pdfrac1sqrt5x22xy2y2dfrac1sqrt5y22yz2z2dfrac1sqrt5z22xz2x2.4139241594094

6 tháng 6 2017

Câu này giải như sau :

Ta có :

\(\sqrt{2a+bc}=\sqrt{\left(a+b+c\right)a+bc}=\sqrt{a^2+ab+ac+bc}=\sqrt{\left(a+c\right)\left(a+b\right)}\)

\(\Rightarrow\sqrt{2a+bc}\le\frac{a+b+a+c}{2}=\frac{2a+b+c}{2}\left(1\right)\)

tương tự ta có :\(\sqrt{2b+ac}\le\frac{2b+a+c}{2}\left(2\right)\)

\(\sqrt{2c+ac}\le\frac{2c+a+c}{2}\left(3\right)\)

cộng vế với vế 1,2,3 ta được

\(Q\le\frac{3\left(a+b+c\right)}{2}=\frac{3.2}{2}=3\)\(\Rightarrow Q_{max}=3\Leftrightarrow\)dấu "=" (a,b,c) là hoán vị của \(\left(0.1.1\right)\)

6 tháng 5 2018

@Hoàng Thanh Tuấn bạn giải sai rồi 

11 tháng 11 2018

Theo BĐT \(AM-GM\) ta có :

\(\dfrac{a}{\sqrt{2b^2+2c^2-a^2}}=\dfrac{\sqrt{3}a^2}{\sqrt{3a^2\left(2b^2+2c^2-a^2\right)}}\ge\dfrac{\sqrt{3}a^2}{\dfrac{2a^2+2b^2+2c^2}{2}}=\dfrac{\sqrt{3}a^2}{a^2+b^2+c^2}\)

Tương tự ta có :

\(\dfrac{b}{\sqrt{2c^2+2a^2-b^2}}\ge\dfrac{\sqrt{3}b^2}{a^2+b^2+c^2}\)

\(\dfrac{c}{\sqrt{2a^2+2b^2-c^2}}\ge\dfrac{\sqrt{3}c^2}{a^2+b^2+c^2}\)

Cộng từng vế BĐT :

\(\Rightarrow VT\ge\dfrac{\sqrt{3}\left(a^2+b^2+c^2\right)}{a^2+b^2+c^2}=\sqrt{3}\)

\("="\Leftrightarrow a=b=c\)

5 tháng 1 2018

Áp dụng BĐT phụ:

\(3\left(a^2+a^2+b^2\right)\ge\left(2a+b\right)^2\)

P=\(\sum\dfrac{a}{\sqrt{2a^2+b^2}+\sqrt{3}}\)

\(\Rightarrow\)\(\dfrac{1}{\sqrt{3}}P=\sum\dfrac{a}{\sqrt{3\left(a^2+a^2+b^2\right)}+3}\)

\(\Rightarrow\)\(\dfrac{1}{\sqrt{3}}P\le\sum\dfrac{a}{\sqrt{\left(2a+b\right)^2}+a+b+c}=\sum\dfrac{a}{3a+2b+c}\)

Xét M=\(\sum\dfrac{a}{3a+2b+c}\)

\(3-3M=\sum\dfrac{2b+c}{3a+2b+c}\)

\(\Rightarrow\)\(3-3M=\sum\dfrac{\left(2b+c\right)^2}{\left(3a+2b+c\right)\left(2b+c\right)}\ge\)\(\dfrac{\left(3a+3b+3c\right)^2}{\sum\left(3a+2b+c\right)\left(2b+c\right)}\)

\(\sum\left(3a+2b+c\right)\left(2b+c\right)=5a^2+5b^2+5c^2+13ab+13bc+13ac=5\left(a+b+c\right)^2+3\left(ab+bc+ac\right)\le5\left(a+b+c\right)^2+\left(a+b+c\right)^2\)

\(\Rightarrow\)\(3-3M\ge\dfrac{\left(3a+3b+3c\right)^2}{6\left(a+b+c\right)^2}\ge\dfrac{9}{6}=\dfrac{3}{2}\)

\(\Rightarrow\)\(M\le\dfrac{1}{2}\)

\(\Rightarrow\)\(\dfrac{1}{\sqrt{3}}P\le\dfrac{1}{2}\Rightarrow P\le\dfrac{\sqrt{3}}{2}\)

5 tháng 1 2018

Dấu \(=\) xảy ra khi và chỉ khi x=y=z=1

19 tháng 5 2018

Ez to prove \(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)

\(\Leftrightarrow\frac{\left(a+b+c\right)^2}{3}\ge ab+bc+ca\)

\(\Leftrightarrow\frac{6054}{3}\ge ab+bc+ca\Leftrightarrow ab+ca+bc\le2018\)

Khi đó: \(\frac{2a}{\sqrt{a^2+2018}}\le\frac{2a}{\sqrt{a^2+ab+bc+ca}}=\frac{2a}{\sqrt{\left(a+b\right)\left(a+c\right)}}\le\frac{a}{a+b}+\frac{a}{a+c}\)

Tương tự cho 2 BĐT còn lại rồi cộng theo vế:

\(P\le\frac{a+b}{a+b}+\frac{b+c}{b+c}+\frac{c+a}{c+a}=3\)

20 tháng 5 2021

Các bạn chuyển \(1c^2\) thành \(2c^2\) cho mk nha

1 tháng 1 2018

Áp dụng bđt bu nhi a, ta có 

\(P^2\le3\left(\frac{1}{a^2+2b^2+3}+\frac{1}{b^2+2c^2+3}+\frac{1}{c^2+2a^2+3}\right)\)

Áp dụng bđt cô si, ta có 

\(a^2+b^2\ge2ab;b^2+1\ge2b\Rightarrow a^2+2b^2+3\ge2\left(ab+b+1\right)\)

tương tự với mấy cái kia =>\(P^2\le\frac{3}{2}\left(\frac{1}{ab+b+1}+\frac{1}{bc+c+a}+\frac{1}{ca+a+1}\right)\)

mà với abc =1, thì bạn sẽ chứng minh được \(\frac{1}{ab+b+1}+\frac{1}{bc+c+1}+\frac{1}{ca+a+1}=1\)

phân thức thứ 1 để nguyê, phân thức thứ 2 nhân với ab, phân thức thứ 3 nhân với b, rồi chỗ napf có abc thì thay abc=1

thì bạn sẽ chứng minh được cái kia=1 

=>\(P\le\sqrt{\frac{3}{2}}\)

dâu = xảy ra <=>a=b=c=1

4 tháng 7 2020

Dễ thấy theo AM - GM :

\(\frac{1}{\sqrt{a^2+2b^2+3}}=\frac{1}{\sqrt{\left(a^2+b\right)+\left(b^2+1\right)+2}}\le\frac{1}{\sqrt{2ab+2b+2}}\)

\(\le\frac{\sqrt{6}}{4}\left(\frac{1}{ab+b+1}+\frac{1}{3}\right)\)

Tương tự:

\(\frac{1}{\sqrt{b^2+2c^2+3}}\le\frac{\sqrt{6}}{4}\left(\frac{1}{bc+c+1}+\frac{1}{3}\right);\frac{1}{\sqrt{c^2+2a^2+3}}\le\frac{\sqrt{6}}{4}\left(\frac{1}{ca+a^2+1}+\frac{1}{3}\right)\)

Cộng lại ta sẽ có đpcm

Vì dễ thấy \(\frac{1}{ab+b+1}+\frac{1}{bc+c+1}+\frac{1}{ca+a+1}=1\) với abc=1

1 tháng 11 2018

Ta có:

1+a2 = ab+bc+ca+a2 = a(a+b)+c(a+b)=(a+b)(a+c)

Tương tự: 1+b2 = (b+c)(b+a)

1+c2 = (c+a)(c+b)

\(\Rightarrow\) P = \(2a\sqrt{\dfrac{1}{\left(a+b\right)\left(a+c\right)}}+2b\sqrt{\dfrac{1}{\left(b+c\right)\left(b+a\right)}}+2c\sqrt{\dfrac{1}{\left(c+a\right)\left(c+b\right)}}\)

Áp dụng BĐT Cô-si ta có:

P\(\le\)\(a\left(\dfrac{1}{a+b}+\dfrac{1}{a+c}\right)+b\left(\dfrac{1}{4\left(b+c\right)}+\dfrac{1}{b+a}\right)+c\left(\dfrac{1}{4\left(c+b\right)}+\dfrac{1}{c+a}\right)\)\(\le\)\(\dfrac{a}{a+b}+\dfrac{a}{a+c}+\dfrac{b}{4\left(b+c\right)}+\dfrac{b}{b+a}+\dfrac{c}{4\left(c+b\right)}+\dfrac{c}{c+a}\)

= \(\dfrac{1}{4}+2=\dfrac{9}{4}\)

\(\Rightarrow\)Pmin = \(\dfrac{9}{4}\)

Dấu "=" xảy ra\(\Leftrightarrow\) b=c=\(\dfrac{a}{7}\)=\(\dfrac{\sqrt{15}}{15}\) \(\Rightarrow\) a = \(\dfrac{7\sqrt{15}}{15}\)

1 tháng 11 2018

Đây là loại đi thi Lý nhưng vẫn rảnh đi làm Toán í~

Khiếp! Chả mấy mà thiViolympic toán 9