Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Biến đổi tương đương:
\(\Leftrightarrow a^2c+ab^2+bc^2\ge b^2c+ac^2+a^2b\)
\(\Leftrightarrow a^2c-a^2b+ab^2-ac^2+bc^2-b^2c\ge0\)
\(\Leftrightarrow a^2\left(c-b\right)-\left(ab+ac\right)\left(c-b\right)+bc\left(c-b\right)\ge0\)
\(\Leftrightarrow\left(c-b\right)\left(a^2+bc-ab-ac\right)\ge0\)
\(\Leftrightarrow\left(c-b\right)\left(a\left(a-b\right)-c\left(a-b\right)\right)\ge0\)
\(\Leftrightarrow\left(c-b\right)\left(a-c\right)\left(a-b\right)\ge0\)
\(\Leftrightarrow\left(c-b\right)\left(c-a\right)\left(b-a\right)\ge0\) luôn đúng do \(a\le b\le c\)
Vậy BĐT ban đầu đúng
Câu 2: Đề sai, cho \(a=b=c=1\Rightarrow3\ge6\) (sai)
Đề đúng phải là \(\frac{a}{bc}+\frac{b}{ac}+\frac{c}{ab}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
\(VT=\frac{a^2}{abc}+\frac{b^2}{abc}+\frac{c^2}{abc}=\frac{a^2+b^2+c^2}{abc}\ge\frac{ab+ac+bc}{abc}=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
Câu 3: Không phải với mọi x; y với mọi \(x;y\) dương
Biến đổi tương đương do mẫu số vế phải dương nên ta được quyền nhân chéo:
\(\Leftrightarrow3x^3\ge\left(2x-y\right)\left(x^2+xy+y^2\right)\)
\(\Leftrightarrow3x^3\ge2x^3+x^2y+xy^2-y^3\)
\(\Leftrightarrow x^3+y^3-x^2y-xy^2\ge0\)
\(\Leftrightarrow x^2\left(x-y\right)-y^2\left(x-y\right)\ge0\)
\(\Leftrightarrow\left(x-y\right)\left(x^2-y^2\right)\ge0\)
\(\Leftrightarrow\left(x-y\right)^2\left(x+y\right)\ge0\) (luôn đúng)
Ta có: \(0\le a\le b\le1.\)
\(\Rightarrow\left\{{}\begin{matrix}a-1\le0\\b-1\le0\end{matrix}\right.\)
\(\Rightarrow\left(a-1\right).\left(b-1\right)\ge0\)
\(\Rightarrow ab-a-b+1\ge0.\)
\(\Rightarrow ab+1\ge0+a+b\)
\(\Rightarrow ab+1\ge a+b\)
\(\Rightarrow\frac{1}{ab+1}\le\frac{1}{a+b}.\)
\(\Rightarrow\frac{c}{ab+1}\le\frac{c}{a+b}\left(c\ge0\right).\)
Mà \(\frac{c}{a+b}\le\frac{2c}{a+b+c}\left(c\ge0\right)\)
\(\Rightarrow\frac{c}{ab+1}\le\frac{2c}{a+b+c}\left(1\right).\)
Chứng minh tương tự ta cũng có:
\(\frac{b}{ac+1}\le\frac{2b}{a+b+c}\left(2\right);\frac{a}{bc+1}\le\frac{2a}{a+b+c}\left(3\right).\)
Cộng theo vế \(\left(1\right);\left(2\right)và\left(3\right)\) ta được:
\(\frac{a}{bc+1}+\frac{b}{ac+1}+\frac{c}{ab+1}\le\frac{2a}{a+b+c}+\frac{2b}{a+b+c}+\frac{2c}{a+b+c}\)
\(\Rightarrow\frac{a}{bc+1}+\frac{b}{ac+1}+\frac{c}{ab+1}\le\frac{2a+2b+2c}{a+b+c}\)
\(\Rightarrow\frac{a}{bc+1}+\frac{b}{ac+1}+\frac{c}{ab+1}\le\frac{2.\left(a+b+c\right)}{a+b+c}\)
\(\Rightarrow\frac{a}{bc+1}+\frac{b}{ac+1}+\frac{c}{ab+1}\le2\left(đpcm\right).\)
Chúc bạn học tốt!
Áp dụng bất đẳng thức cho hai số dương
\(\dfrac{1}{\left(a+b\right)}\le\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\)
Xét \(c+1=c+a+b+c\)
\(\dfrac{ab}{c+1}\le\dfrac{ab}{4\left[\dfrac{1}{a+c}+\dfrac{1}{b+c}\right]}\)
Tương tự:
\(\dfrac{bc}{a+1}\le\dfrac{bc}{4\left[\dfrac{1}{a+c}+\dfrac{1}{b+a}\right]}\)
\(\dfrac{ca}{b+1}\le\dfrac{ac}{4\left[\dfrac{1}{a+b}+\dfrac{1}{c+b}\right]}\)
Cộng lại :
\(\dfrac{ab}{c+1}+\dfrac{bc}{a+1}+\dfrac{ca}{b+1}\le\dfrac{1}{4}\left[\dfrac{ab}{a+c}+\dfrac{ab}{b+c}+\dfrac{bc}{a+c}+\dfrac{bc}{a+b}+\dfrac{ac}{a+b}+\dfrac{ac}{b+c}\right]\)
Rút gọn mẫu số
\(\Rightarrow\dfrac{ab}{c+1}+\dfrac{bc}{a+1}+\dfrac{ca}{b+1}\le\dfrac{1}{4}\left(a+b+c\right)=\dfrac{1}{4}\)
1) Theo bđt AM-GM,ta có: \(\frac{a^2}{b+c}+\frac{b+c}{4}\ge2\sqrt{\frac{a^2}{b+c}.\frac{b+c}{4}}=a\)
Suy ra \(\frac{a^2}{b+c}\ge a-\frac{b+c}{4}\)
Thiết lập hai BĐT còn lại tương tự và cộng theo vế ta có đpcm