K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 5 2018

qua vo van

19 tháng 5 2018

Thôi làm luôn nãy h chém nhiều mỏi tay quá. Bổ sung điều kiện a;b;c>1

\(\dfrac{4a^2}{a-1}+\dfrac{5b^2}{b-1}+\dfrac{3c^2}{c-1}\ge48\)

\(\Rightarrow\left(\dfrac{4a^2}{a-1}-16\right)+\left(\dfrac{5b^2}{b-1}-20\right)+\left(\dfrac{3c^2}{c-1}-12\right)\ge0\)

\(\Rightarrow\dfrac{4a^2-16a+16}{a-1}+\dfrac{5b^2-20b+20}{b-1}+\dfrac{3c^2-12c+12}{c-1}\ge0\)

\(\Rightarrow\dfrac{4\left(a-2\right)^2}{a-1}+\dfrac{5\left(b-2\right)^2}{b-1}+\dfrac{3\left(c-2\right)^2}{c-1}\ge0\) (đúng)

Dấu "=" khi \(a=b=c=2\)

1 tháng 3 2019

Ta chứng minh bổ đề sau:

\(\dfrac{5b^3-a^3}{ab+3b^2}\le2b-a\)

\(\Leftrightarrow5b^3-a^3\le\left(2b-a\right)\left(ab+3b^2\right)\)

\(\Leftrightarrow5b^3-a^3\le2ab^2+6b^3-a^2b-3b^2a\)

\(\Leftrightarrow a^3+b^3-a^2b-b^2a\ge0\)

\(\Leftrightarrow\left(a+b\right)\left(a^2-ab+b^2\right)-ab\left(a+b\right)\ge0\)

\(\Leftrightarrow\left(a+b\right)\left(a^2-2ab+b^2\right)\ge0\)

\(\Leftrightarrow\left(a+b\right)\left(a-b\right)^2\ge0\)

Bất đẳng thức cuối luôn đúng, vậy ta có

\(M\le2a-b+2b-c+2c-a=a+b+c\)Chứng minh hoàn tất. Đẳng thức xảy ra khi \(a=b=c\)

8 tháng 10 2016

Ta có \(\frac{4a^2}{a-1}=\frac{4a^2-4+4}{a-1}=\frac{4\left(a^2-1\right)+4}{a-1}\)

\(=\frac{4\left(a-1\right)\left(a+1\right)+4}{a-1}=4\left(a+1\right)+\frac{4}{a-1}\)

\(=4\left(a-1\right)+\frac{4}{a-1}+8\)

Vì \(a>1\Rightarrow a-1>0\), áp dụng bđt cosi cho 2 số 4(a-1) và \(\frac{4}{a-1}\)ta được

\(4\left(a-1\right)+\frac{4}{a-1}\ge2\sqrt{\frac{4\left(a-1\right).4}{a-1}}=2\sqrt{4^2}=8\)

\(\Leftrightarrow4\left(a-1\right)+\frac{4}{a-1}+8\ge16\)

\(\Leftrightarrow\frac{4a^2}{a-1}\ge16\)             (1)

Chững minh tương tự, ta được

\(\frac{5b^2}{b-1}\ge20\)                     (2)

\(\frac{3c^2}{c-1}\ge12\)                    (3)

Cộng (1)(2)(3) ta được

\(\frac{4a^2}{a-1}+\frac{5b^2}{b-1}+\frac{3b^2}{c-1}\ge48\)

28 tháng 5 2017

cần 1 lời giải đáp cụ thể

28 tháng 5 2017

trên face có đấy,lên đó mà tìm

20 tháng 2 2020

\(+\frac{20b^3-\left(a^3+b^3\right)}{ab+5b^2}\le\frac{20b^3-ab\left(a+b\right)}{ab+5b^2}=\frac{b\left(20b^2-a^2-ab\right)}{b\left(a+5b\right)}=\frac{\left(4b-a\right)\left(a+5b\right)}{a+5b}=4b-a\)

( áp dụng bđt : \(a^3+b^3\ge ab\left(a+b\right)\) ( biến đổi tương đương là c/m đc ) )

Dấu "=" \(\Leftrightarrow a=b\)

+ Tương tự : \(\frac{19c^3-b^3}{bc+5c^2}\le4c-b\) Dấu "=" <=> b = c

\(\frac{19a^3-c^3}{ac+5a^2}\le4a-c\) Dấu "=" \(\Leftrightarrow a=c\)

Cộng vế theo vế ta có đpcm. Dấu "=" \(\Leftrightarrow a=b=c=\frac{1}{3}\)

31 tháng 3 2017

Bài 2:

\(\sqrt{\dfrac{a}{b+c}}+\sqrt{\dfrac{b}{c+a}}+\sqrt{\dfrac{c}{a+b}}>2\)

Trước hết ta chứng minh \(\sqrt{\dfrac{a}{b+c}}\ge\dfrac{2a}{a+b+c}\)

Áp dụng BĐT AM-GM ta có:

\(\sqrt{a\left(b+c\right)}\le\dfrac{a+b+c}{2}\)\(\Rightarrow1\ge\dfrac{2\sqrt{a\left(b+c\right)}}{a+b+c}\)

\(\Rightarrow\sqrt{\dfrac{a}{b+c}}\ge\dfrac{2a}{a+b+c}\). Ta lại có:

\(\sqrt{\dfrac{a}{b+c}}=\dfrac{\sqrt{a}}{\sqrt{b+c}}=\dfrac{a}{\sqrt{a\left(b+c\right)}}\ge\dfrac{2a}{a+b+c}\)

Thiết lập các BĐT tương tự:

\(\sqrt{\dfrac{b}{c+a}}\ge\dfrac{2b}{a+b+c};\sqrt{\dfrac{c}{a+b}}\ge\dfrac{2c}{a+b+c}\)

Cộng theo vế 3 BĐT trên ta có:

\(VT\ge\dfrac{2a}{a+b+c}+\dfrac{2b}{a+b+c}+\dfrac{2c}{a+b+c}=\dfrac{2\left(a+b+c\right)}{a+b+c}\ge2\)

Dấu "=" không xảy ra nên ta có ĐPCM

Lưu ý: lần sau đăng từng bài 1 thôi nhé !

31 tháng 3 2017

1) Áp dụng liên tiếp bđt \(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\) với a;b là 2 số dương ta có:

\(\dfrac{1}{2a+b+c}=\dfrac{1}{\left(a+b\right)+\left(a+c\right)}\le\dfrac{\dfrac{1}{a+b}+\dfrac{1}{a+c}}{4}\)\(\le\dfrac{\dfrac{2}{a}+\dfrac{1}{b}+\dfrac{1}{c}}{16}\)

TT: \(\dfrac{1}{a+2b+c}\le\dfrac{\dfrac{2}{b}+\dfrac{1}{a}+\dfrac{1}{c}}{16}\)

\(\dfrac{1}{a+b+2c}\le\dfrac{\dfrac{2}{c}+\dfrac{1}{a}+\dfrac{1}{b}}{16}\)

Cộng vế với vế ta được:

\(\dfrac{1}{2a+b+c}+\dfrac{1}{a+2b+c}+\dfrac{1}{a+b+2c}\le\dfrac{1}{16}.\left(\dfrac{4}{a}+\dfrac{4}{b}+\dfrac{4}{c}\right)=1\left(đpcm\right)\)

17 tháng 2 2018

áp dụng bdt côsi \(\dfrac{a^2}{b^3}+\dfrac{1}{a}+\dfrac{1}{a}\ge\dfrac{3}{b}\)

tuông tu \(\dfrac{b^2}{c^3}+\dfrac{1}{b}+\dfrac{1}{b}\ge\dfrac{3}{c}\)

\(\dfrac{c^2}{a^3}+\dfrac{1}{c}+\dfrac{1}{c}\ge\dfrac{3}{a}\)

suy ra vt +\(2\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge3\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)

suy ra dpcm

dau = xay ra khi a=b=c

30 tháng 9 2018

Áp dụng BĐT: x2+y2+z2\(\ge\)xy+yz+zx ( với x,y,z >0)

Ta có\(\dfrac{a^8+b^8+c^8}{a^3b^3c^3}\)\(\ge\)\(\dfrac{a^4b^4+b^4c^4+c^4a^4}{a^3b^3c^3}\)

\(\ge\)\(\dfrac{a^4b^2c^2+b^4c^2a^2+c^4a^2b^2}{a^3b^3c^3}\)=\(\dfrac{a^2+b^2+c^2}{abc}\)\(\ge\)\(\dfrac{ab+bc+ca}{abc}\)

= \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\) (đpcm)

Dấu "=" xảy ra \(\Leftrightarrow\) a=b=c