Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=a-\frac{ab^2}{1+b^2}+b-\frac{bc^2}{1+c^2}+c-\frac{ca^2}{1+a^2}\)
\(\ge a-\frac{ab^2}{2b}+b-\frac{bc^2}{2c}+c-\frac{ca^2}{2c}\) (AM-GM)
\(\ge a-\frac{ab}{2}+b-\frac{bc}{2}+c-\frac{ac}{2}\ge\left(a+b+c\right)-\frac{\left(a+b+c\right)^2}{6}\ge3-\frac{3}{2}=\frac{3}{2}\)
Vay MinP=3/2 dau = xay ra khi a=b=c=1
Lời giải:
Bài 1:
Áp dụng BĐT Cô -si ta có:
\(a^3+1+1\geq 3\sqrt[3]{a^3}=3a\)
\(b^3+1+1\geq 3\sqrt[3]{b^3}=3b\)
Cộng theo vế:
\(a^3+b^3+4\geq 3(a+b)\)
\(\Leftrightarrow 6\geq 3(a+b)\Leftrightarrow a+b\leq 2\)
Vậy \((a+b)_{\max}=2\). Dấu bằng xảy ra khi \(a=b=1\)
Bài 2:
Áp dụng BĐT Cô- si ta có:
\(\frac{a^3}{b+c}+\frac{b+c}{4}+\frac{1}{2}\geq 3\sqrt[3]{\frac{a^3}{8}}=\frac{3}{2}a\)
\(\frac{b^3}{c+a}+\frac{c+a}{4}+\frac{1}{2}\geq 3\sqrt[3]{\frac{b^3}{8}}=\frac{3}{2}b\)
\(\frac{c^3}{a+b}+\frac{a+b}{4}+\frac{1}{2}\geq 3\sqrt[3]{\frac{c^3}{8}}=\frac{3}{2}c\)
Cộng theo vế:
\(T+\frac{1}{2}(a+b+c)+\frac{3}{2}\geq \frac{3}{2}(a+b+c)\)
\(\Leftrightarrow T\geq a+b+c-\frac{3}{2}\)
Theo BĐT Cô-si: \(a+b+c\geq 3\sqrt[3]{abc}=3\)
\(\Rightarrow T\geq 3-\frac{3}{2}=\frac{3}{2}\)
Vậy \(T_{\min}=\frac{3}{2}\Leftrightarrow a=b=c=1\)
Bài 3:
Điều kiện đề bài tương đương với:
\(a\leq 1; b+2a\leq 4; 2c+3b+6a\leq 18\)
Ta có:
\(A=2\left (\frac{1}{6a}+\frac{1}{3b}+\frac{1}{2c}\right)+\frac{1}{3}\left(\frac{1}{2a}+\frac{1}{b}\right)+\frac{1}{2a}\)
Áp dụng BĐT Bunhiacopxky:
\(\left(\frac{1}{6a}+\frac{1}{3b}+\frac{1}{2c}\right)(6a+3b+2c)\geq (1+1+1)^2\)
\(\Rightarrow \frac{1}{6a}+\frac{1}{3b}+\frac{1}{2c}\geq \frac{9}{6a+3b+2c}\geq \frac{9}{18}=\frac{1}{2}\) (1)
\(\left(\frac{1}{2a}+\frac{1}{b}\right)(2a+b)\geq (1+1)^2\)
\(\Rightarrow \frac{1}{2a}+\frac{1}{b}\geq \frac{4}{2a+b}\geq \frac{4}{4}=1\) (2)
\(\frac{1}{2a}\geq \frac{1}{2.1}=\frac{1}{2}\) (3)
Từ (1)(2)(3) suy ra \(A\geq 2.\frac{1}{2}+\frac{1}{3}.1+\frac{1}{2}=\frac{11}{6}\)
Dấu bằng xảy ra khi \(a=1; b=2; c=3\)
1.
\(6=\frac{\sqrt{2}^2}{x}+\frac{\sqrt{3}^2}{y}\ge\frac{\left(\sqrt{2}+\sqrt{3}\right)^2}{x+y}=\frac{5+2\sqrt{6}}{x+y}\)
\(\Rightarrow x+y\ge\frac{5+2\sqrt{6}}{6}\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}\frac{x}{\sqrt{2}}=\frac{y}{\sqrt{3}}\\x+y=\frac{5+2\sqrt{6}}{6}\end{matrix}\right.\)
Bạn tự giải hệ tìm điểm rơi nếu thích, số xấu quá
2.
\(VT\ge\sqrt{\left(x+y+z\right)^2+\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2}\ge\sqrt{\left(x+y+z\right)^2+\frac{81}{\left(x+y+z\right)^2}}\)
Đặt \(x+y+z=t\Rightarrow0< t\le1\)
\(VT\ge\sqrt{t^2+\frac{81}{t^2}}=\sqrt{t^2+\frac{1}{t^2}+\frac{80}{t^2}}\ge\sqrt{2\sqrt{\frac{t^2}{t^2}}+\frac{80}{1^2}}=\sqrt{82}\)
Dấu "=" xảy ra khi \(x=y=z=\frac{1}{3}\)
3.
\(\frac{a^2}{b^5}+\frac{a^2}{b^5}+\frac{a^2}{b^5}+\frac{1}{a^3}+\frac{1}{a^3}\ge5\sqrt[5]{\frac{a^6}{b^{15}.a^6}}=\frac{5}{b^3}\)
Tương tự: \(\frac{3b^2}{c^5}+\frac{2}{b^3}\ge\frac{5}{a^3}\) ; \(\frac{3c^2}{d^5}+\frac{2}{c^3}\ge\frac{5}{d^3}\) ; \(\frac{3d^2}{a^5}+\frac{2}{d^2}\ge\frac{5}{a^3}\)
Cộng vế với vế và rút gọn ta được: \(3VT\ge3VP\)
Dấu "=" xảy ra khi và chỉ khi \(a=b=c=d=1\)
4.
ĐKXĐ: \(-2\le x\le2\)
\(y^2=\left(x+\sqrt{4-x^2}\right)^2\le2\left(x^2+4-x^2\right)=8\)
\(\Rightarrow y\le2\sqrt{2}\Rightarrow y_{max}=2\sqrt{2}\) khi \(x=\sqrt{2}\)
Mặt khác do \(\left\{{}\begin{matrix}x\ge-2\\\sqrt{4-x^2}\ge0\end{matrix}\right.\) \(\Rightarrow x+\sqrt{4-x^2}\ge-2\)
\(y_{min}=-2\) khi \(x=-2\)
Đặt \(\left(x;y;z\right)\rightarrow\left(a;\frac{1}{b};c\right)\Rightarrow x+y+z=3\)
Khi đó:
\(M=\frac{1}{x+1}+\frac{1}{xy+1}+\frac{1}{xyz+3}\)
\(\ge\frac{9}{x+xy+xyz+5}\)
Mà theo AM - GM:
\(x+xy+xyz=x\left(1+y+yz\right)=x\left[1+y\left(z+1\right)\right]\le x\left[1+\left(\frac{4-x}{2}\right)^2\right]\)
\(=4-\frac{\left(x-2\right)^2\left(4-x\right)}{4}\le4\)
Đẳng thức xảy ra tại \(x=2;y=1;z=0\)
Vào TKHĐ của mình để xem hình ảnh nhé !
Cre: Chủ tịch học toán
\(P=\dfrac{a^3}{\sqrt{b^2+3}}+\dfrac{b^3}{\sqrt{c^2+3}}+\dfrac{c^3}{\sqrt{a^2+3}}\)
\(P=\dfrac{a^4}{\sqrt{a^2\left(b^2+3\right)}}+\dfrac{b^4}{\sqrt{b^2\left(c^2+3\right)}}+\dfrac{c^4}{\sqrt{c^2\left(a^2+3\right)}}\)
Áp dụng bất đẳng thức Cauchy - Schwarz dạng phân thức
\(\Rightarrow VT\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{\sqrt{a^2\left(b^2+3\right)}+\sqrt{b^2\left(c^2+3\right)}+\sqrt{c^2\left(a^2+3\right)}}\)
Áp dụng bất đẳng thức Cauchy - Schwarz
\(\Rightarrow\left\{{}\begin{matrix}\sqrt{a^2\left(b^2+3\right)}\le\dfrac{a^2+b^2+3}{2}\\\sqrt{b^2\left(c^2+3\right)}\le\dfrac{b^2+c^2+3}{2}\\\sqrt{c^2\left(a^2+3\right)}\le\dfrac{c^2+a^2+3}{2}\end{matrix}\right.\)
\(\Rightarrow\sqrt{a^2\left(b^2+3\right)}+\sqrt{b^2\left(c^2+3\right)}+\sqrt{c^2\left(a^2+3\right)}\le\dfrac{2\left(a^2+b^2+c^2\right)+3}{2}=\dfrac{9}{2}\)
\(\Rightarrow\dfrac{\left(a^2+b^2+c^2\right)^2}{\sqrt{a^2\left(b^2+3\right)}+\sqrt{b^2\left(c^2+3\right)}+\sqrt{c^2\left(a^2+3\right)}}\ge\dfrac{2\left(a^2+b^2+c^2\right)^2}{9}=2\)
Vì \(VT\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{\sqrt{a^2\left(b^2+3\right)}+\sqrt{b^2\left(c^2+3\right)}+\sqrt{c^2\left(a^2+3\right)}}\)
\(\Rightarrow VT\ge2\)
\(\Leftrightarrow\dfrac{a^3}{\sqrt{b^2+3}}+\dfrac{b^3}{\sqrt{c^2+3}}+\dfrac{c^3}{\sqrt{a^2+3}}\ge2\)
\(\Leftrightarrow P\ge2\)
Vậy \(P_{min}=2\)
đặt (với a, b, c > 0). Khi đó phương trình đã cho trở thành:
a = b = c = 2
Suy ra: x = 2013, y = 2014, z = 2015.
Lời giải:
Áp dụng BĐT Cauchy-Schwarz ta có:
\(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{2\sqrt[3]{abc}}=\frac{c^2}{c^2(a+b)}+\frac{a^2}{a^2(b+c)}+\frac{b^2}{b^2(c+a)}+\frac{(\sqrt[3]{abc})^2}{2abc}\)
\(\geq \frac{(c+a+b+\sqrt[3]{abc})^2}{c^2(a+b)+a^2(b+c)+b^2(c+a)+2abc}=\frac{(a+b+c+\sqrt[3]{abc})^2}{(a+b)(b+c)(c+a)}\)
Ta có đpcm
Dấu "=" xảy ra khi $a=b=c$
1) ĐK: \(\frac{x+1}{x}>0\Leftrightarrow\left[\begin{array}{nghiempt}x>0\\x< -1\end{array}\right.\)
Đặt \(t=\sqrt{\frac{x+1}{x}}\left(t>0\right)\) , bất pt đã cho trở thành:
\(\frac{1}{t^2}-2t>3\Leftrightarrow\frac{1-2t^3-3t^2}{t^2}>0\Leftrightarrow1-2t^3-3t^2>0\)
\(\Leftrightarrow\left(t+1\right)^2\left(1-2t\right)>0\Leftrightarrow1-2t>0\Leftrightarrow t< \frac{1}{2}\)
\(t< \frac{1}{2}\Rightarrow\sqrt{\frac{x+1}{x}}< \frac{1}{2}\Leftrightarrow\frac{x+1}{x}< \frac{1}{4}\Leftrightarrow\frac{3x+4}{4x}< 0\)
Lập bảng xét dấu ta được \(-\frac{4}{3}< x< 0\)
Kết hợp điều kiện ta được: \(-\frac{4}{3}< x< -1\) là giá trị cần tìm
3) Chứng minh BĐT phụ: \(\frac{1}{a+b}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)\left(a,b>0\right)\)(1)
\(\left(1\right)\Leftrightarrow\frac{1}{a+b}\le\frac{a+b}{4ab}\Leftrightarrow4ab\le\left(a+b\right)^2\Leftrightarrow\left(a-b\right)^2\ge0\)
Dấu '=' xảy ra ↔ a = b
Áp dụng BĐT trên, ta có:
\(\frac{x}{x+1}=\frac{x}{x+x+y+z}=\frac{x}{x+y+x+z}\le\frac{1}{4}\left(\frac{x}{x+y}+\frac{x}{x+z}\right)\)
Tương tự:
\(\frac{y}{y+1}\le\frac{1}{4}\left(\frac{y}{y+x}+\frac{y}{y+z}\right)\)
\(\frac{z}{z+1}\le\frac{1}{4}\left(\frac{z}{z+x}+\frac{z}{z+y}\right)\)
Cộng vế theo vế ba BĐT trên ta được:
\(P\le\frac{1}{4}\left(\frac{x}{x+y}+\frac{y}{x+y}+\frac{x}{x+z}+\frac{z}{z+x}+\frac{z}{z+y}+\frac{y}{y+z}\right)\)
\(\Leftrightarrow P\le\frac{1}{4}\left(1+1+1\right)=\frac{3}{4}\)
Dấu '=' xảy ra khi x = y = z = 1/3 (do x + y + z = 1)
Vậy GTLN của P là 3/4 khi x = y = z = 1/3