K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 12 2018

đk gì nữa ko bạn

9 tháng 12 2018

\(a+b+c\ge\dfrac{1}{3}\)hình như là thêm đk này nữa

5 tháng 11 2018

\(P=\dfrac{bc}{\dfrac{a^2bc}{c}+\dfrac{a^2bc}{b}}+\dfrac{ca}{\dfrac{b^2ac}{a}+\dfrac{b^2ac}{c}}+\dfrac{ab}{\dfrac{c^2ab}{b}+\dfrac{c^2ab}{a}}=\dfrac{\left(bc\right)^2}{a^2b^2c+a^2bc^2}+\dfrac{\left(ca\right)^2}{b^2a^2c+b^2ac^2}+\dfrac{\left(ab\right)^2}{c^2a^2b+c^2ab^2}=\dfrac{\left(bc\right)^2}{ab+ac}+\dfrac{\left(ca\right)^2}{ba+bc}+\dfrac{\left(ab\right)^2}{ca+cb}\ge\dfrac{\left(ab+bc+ca\right)^2}{2\left(ab+bc+ca\right)}=\dfrac{ab+bc+ca}{2}\ge\dfrac{3\sqrt[3]{\left(abc\right)^2}}{2}=\dfrac{3}{2}\)

Dấu "=" xảy ra <=> a = b = c = 1

5 tháng 11 2018

3 phân số bé hơn hoặc bằng có thể giait hích ko

AH
Akai Haruma
Giáo viên
2 tháng 8 2017

Lời giải:

Tìm max:

Áp dụng BĐT Bunhiacopxky:

\(A^2=(2x+\sqrt{5-x^2})^2\leq (x^2+5-x^2)(2^2+1)=25\)

\(\Rightarrow A\leq 5\)

Vậy \(A_{\max}=5\Leftrightarrow x=2\)

Tìm min:

ĐKXĐ: \(5-x^2\geq 0\Leftrightarrow -\sqrt{5}\leq x\leq \sqrt{5}\)

Do đó : \(A=2x+\sqrt{5-x^2}\geq 2x\geq -2\sqrt{5}\)

Vậy \(A_{\min}=-2\sqrt{5}\Leftrightarrow x=-\sqrt{5}\)

AH
Akai Haruma
Giáo viên
2 tháng 8 2017

Bài 2 bạn xem xem có viết nhầm đề bài không nhé.

\(A=\frac{3a}{2a-b}+\frac{3c}{2c-b}-2\)

Chỉ cần cho $b$ càng nhỏ thì giá trị của $A$ càng nhỏ rồi, mà lại không có điều kiện gì của $b$ ?

22 tháng 2 2018

Áp dụng BĐt cô-si, ta có \(\frac{2\left(a+b\right)^2}{2a+3b}\ge\frac{8ab}{2a+3b}=\frac{8}{\frac{2}{b}+\frac{3}{a}}\)

                                      \(\frac{\left(b+2c\right)^2}{2b+c}\ge\frac{8bc}{2b+c}=\frac{8}{\frac{2}{c}+\frac{1}{b}}\)

                                        \(\frac{\left(2c+a\right)^2}{c+2a}\ge\frac{8ac}{c+2a}\ge\frac{8}{\frac{1}{a}+\frac{2}{c}}\)

Cộng 3 cái vào, ta có 

A\(\ge8\left(\frac{1}{\frac{2}{b}+\frac{3}{a}}+\frac{1}{\frac{1}{b}+\frac{2}{c}}+\frac{1}{\frac{1}{a}+\frac{2}{c}}\right)\ge8\left(\frac{9}{\frac{3}{b}+\frac{4}{c}+\frac{4}{a}}\right)=8.\frac{9}{3}=24\)

Vậy A min = 24 

Neetkun ^^

22 tháng 2 2018

bạn tìm ra dấu= xảy ra khi nào

5 tháng 6 2018

lm giúp e vs ạkhocroi

AH
Akai Haruma
Giáo viên
7 tháng 1 2019

Lời giải:

Áp dụng BĐT AM-GM:

\(P=\frac{\sqrt{ab}}{(a+c)+(b+c)}+\frac{\sqrt{bc}}{(b+a)+(c+a)}+\frac{\sqrt{ca}}{(c+b)+(a+b)}\)

\(\leq \underbrace{\frac{\sqrt{ab}}{2\sqrt{(a+c)(b+c)}}+\frac{\sqrt{bc}}{2\sqrt{(b+a)(c+a)}}+\frac{\sqrt{ca}}{2\sqrt{(c+b)(a+b)}}}_{M}(*)\)

Xét:

\(M=\frac{1}{2}\frac{\sqrt{ab(a+b)}+\sqrt{bc(b+c)}+\sqrt{ca(c+a)}}{\sqrt{(a+b)(b+c)(c+a)}}(1)\)

Theo BĐT Bunhiacopxky và AM-GM:

\((\sqrt{ab(a+b)}+\sqrt{bc(b+c)}+\sqrt{ca(c+a)})^2\leq (ab+bc+ac)(a+b+b+c+c+a)\)

\(=2(ab+bc+ac)(a+b+c)=2[(a+b)(b+c)(c+a)+abc]\)

\(\leq 2[(a+b)(b+c)(c+a)+\frac{(a+b)(b+c)(c+a)}{8}]=\frac{9}{4}(a+b)(b+c)(c+a)\)

\(\Rightarrow \sqrt{ab(a+b)}+\sqrt{bc(b+c)}+\sqrt{ca(c+a)}\leq \frac{3}{2}\sqrt{(a+b)(b+c)(c+a)}(2)\)

Từ \((1);(2)\Rightarrow M\leq \frac{1}{2}.\frac{3}{2}=\frac{3}{4}(**)\)

Từ \((*); (**)\Rightarrow P\leq M\leq \frac{3}{4}\)

Vậy \(P_{\max}=\frac{3}{4}\Leftrightarrow a=b=c\)

8 tháng 1 2019

em cảm ơn cô

AH
Akai Haruma
Giáo viên
29 tháng 1 2018

Lời giải:

Áp dụng BĐT Cauchy-Schwarz:

\(\text{VT}=\frac{\left ( \frac{a}{bc} \right )^2}{\frac{1}{c}}+\frac{\left ( \frac{b}{ca} \right )^2}{\frac{1}{a}}+\frac{\left ( \frac{c}{ab} \right )^2}{\frac{1}{b}}\geq \frac{\left ( \frac{a}{bc}+\frac{b}{ac}+\frac{c}{ab} \right )^2}{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}}\)

\(\Leftrightarrow \text{VT}\geq \frac{\left ( \frac{a^2+b^2+c^2}{abc} \right )^2}{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}}\)

Theo hệ quả của BĐT AM-GM thì:

\(a^2+b^2+c^2\geq ab+bc+ac\)

\(\Rightarrow \text{VT}\geq \frac{\left ( \frac{ab+bc+ac}{abc} \right )^2}{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}}=\frac{\left ( \frac{1}{a}+\frac{1}{b}+\frac{1}{c} \right )^2}{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}}=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

Ta có đpcm.

Dấu bằng xảy ra khi \(a=b=c\)

3 tháng 3 2019

\(vì:a,b,c>0\Rightarrow\dfrac{1}{a};\dfrac{1}{b};\dfrac{1}{c}>0\)

\(Cosi:\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{2}{\sqrt{ab}}\ge\dfrac{2}{\dfrac{a+b}{2}}=\dfrac{4}{a+b}\)

\(\dfrac{4}{2a+b+c}\le\dfrac{1}{4}\left(\dfrac{4}{a+b}+\dfrac{4}{a+c}\right)\le\dfrac{1}{16}\left(\dfrac{8}{a}+\dfrac{4}{b}+\dfrac{4}{c}\right)=\dfrac{1}{2a}+\dfrac{1}{4b}+\dfrac{1}{4c}.tươngtự:\dfrac{4}{a+b+2c}\le\dfrac{1}{4a}+\dfrac{1}{4b}+\dfrac{1}{2c};\dfrac{4}{a+2b+c}\le\dfrac{1}{4a}+\dfrac{1}{2b}+\dfrac{1}{2c}.\text{cộng vế theo vế ta được:}\dfrac{4}{a+2b+c}+\dfrac{4}{2a+b+c}+\dfrac{4}{a+b+2c}\le\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\left(\text{đpcm}\right)\)

NV
3 tháng 3 2019

Áp dụng BĐT \(\dfrac{1}{x+y+z+t}\le\dfrac{1}{16}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}+\dfrac{1}{t}\right)\) với các số dương

Ta có: \(\dfrac{4}{a+a+b+c}\le\dfrac{4}{16}\left(\dfrac{1}{a}+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=\dfrac{1}{4}\left(\dfrac{2}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)

\(\dfrac{4}{a+b+2c}\le\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{2}{c}\right)\)

\(\dfrac{4}{a+2b+c}\le\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{2}{b}+\dfrac{1}{c}\right)\)

Cộng vế với vế:

\(\dfrac{4}{2a+b+c}+\dfrac{4}{a+2b+c}+\dfrac{4}{a+b+2c}\le\dfrac{1}{4}\left(\dfrac{4}{a}+\dfrac{4}{b}+\dfrac{4}{c}\right)=\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)

Dấu "=" xảy ra khi \(a=b=c\)

30 tháng 12 2021

\(4M=\dfrac{4}{\left(a+b\right)+\left(a+c\right)}+\dfrac{4}{\left(a+b\right)+\left(b+c\right)}+\dfrac{4}{\left(c+a\right)+\left(b+c\right)}\)

\(\le\dfrac{1}{a+b}+\dfrac{1}{a+c}+\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}+\dfrac{1}{b+c}\)

\(=\dfrac{2}{a+b}+\dfrac{2}{b+c}+\dfrac{2}{c+a}\)

=> 8M \(\le\dfrac{4}{a+b}+\dfrac{4}{b+c}+\dfrac{4}{c+a}\)

\(\le\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{c}+\dfrac{1}{a}=2\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=8\)

=> \(M\le1\)

Dấu "=" xảy ra <=> a = b = c = 3/4 

NV
30 tháng 12 2021

\(\dfrac{1}{2a+b+c}=\dfrac{1}{a+a+b+c}\le\dfrac{1}{16}\left(\dfrac{1}{a}+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=\dfrac{1}{16}\left(\dfrac{2}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)

Tương tự:

\(\dfrac{1}{a+2b+c}\le\dfrac{1}{16}\left(\dfrac{1}{a}+\dfrac{2}{b}+\dfrac{1}{c}\right)\) ; \(\dfrac{1}{a+b+2c}\le\dfrac{1}{16}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{2}{c}\right)\)

Cộng vế:

\(M\le\dfrac{1}{16}\left(\dfrac{4}{a}+\dfrac{4}{b}+\dfrac{4}{c}\right)=\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=1\)

\(M_{max}=1\)  khi \(a=b=c=\dfrac{3}{4}\)