Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(VT=\frac{a^3}{b^2+8}+\frac{b^3}{c^2+8}+\frac{c^3}{a^2+8}\)
\(=\frac{a^3}{b^2+ab+bc+ca}+\frac{b^3}{c^2+ab+bc+ca}+\frac{c^3}{a^2+ab+bc+ca}\)
\(=\frac{a^3}{\left(a+b\right)\left(b+c\right)}+\frac{b^3}{\left(b+c\right)\left(c+a\right)}+\frac{c^3}{\left(c+a\right)\left(a+b\right)}\)
Áp dụng BĐT Cô si ta có :
\(\left\{{}\begin{matrix}\frac{a^3}{\left(a+b\right)\left(b+c\right)}+\frac{a+b}{8}+\frac{b+c}{8}\ge\frac{3a}{4}\\\frac{b^3}{\left(b+c\right)\left(c+a\right)}+\frac{b+c}{8}+\frac{c+a}{8}\ge\frac{3b}{4}\\\frac{c^3}{\left(c+a\right)\left(a+b\right)}+\frac{c+a}{8}+\frac{a+b}{8}\ge\frac{3c}{4}\end{matrix}\right.\)
\(\Rightarrow\frac{a^3}{\left(a+b\right)\left(b+c\right)}+\frac{b^3}{\left(b+c\right)\left(c+a\right)}+\frac{c^3}{\left(c+a\right)\left(a+b\right)}\ge\frac{a+b+c}{4}\ge\frac{\sqrt{3\left(ab+bc+ca\right)}}{4}=\frac{3}{4}\)
Vậy BĐT được chứng minh . Dấu = xảy ra khi \(a=b=c=1\)
\(3=ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}\Rightarrow a+b+c\ge3\)
Ta có: \(\frac{a^3}{b^2+3}=\frac{a^3}{b^2+ab+bc+ca}=\frac{a^3}{\left(a+b\right)\left(b+c\right)}\)
Mặt khác \(\frac{a^3}{\left(a+b\right)\left(b+c\right)}+\frac{a+b}{8}+\frac{b+c}{8}\ge\frac{3a}{4}\)
Tương tự: \(\frac{b^3}{c^3+3}+\frac{a+c}{8}+\frac{b+c}{8}\ge\frac{3b}{4}\) ; \(\frac{c^3}{a^2+8}+\frac{a+b}{8}+\frac{a+c}{8}\ge\frac{3c}{4}\)
Cộng vế với vế:
\(P+\frac{1}{2}\left(a+b+c\right)\ge\frac{3}{4}\left(a+b+c\right)\)
\(\Rightarrow P\ge\frac{1}{4}\left(a+b+c\right)\ge\frac{3}{4}\)
Dấu "=" xảy ra khi \(a=b=c=1\)
Lời giải:
Ta thấy:
\(\text{VT}=(a+\frac{ca}{a+b})+(b+\frac{ab}{b+c})+(c+\frac{bc}{c+a})\)
\(=\frac{a(a+b+c)}{a+b}+\frac{b(a+b+c)}{b+c}+\frac{c(a+b+c)}{c+a}\)
\(=(a+b+c)\left(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\right)\)
\(\geq (a+b+c).\frac{(a+b+c)^2}{a^2+ab+b^2+bc+c^2+ac}=\frac{(a+b+c)^3}{a^2+b^2+c^2+ab+bc+ac}\) (theo BĐT Cauchy-Schwarz)
Có:
$(a+b+c)^2=a^2+b^2+c^2+2(ab+bc+ac)=a^2+b^2+c^2+2$
$\Rightarrow a+b+c=\sqrt{a^2+b^2+c^2+2}=\sqrt{t+2}$ với $t=a^2+b^2+c^2$
Do đó:
$\text{VT}\geq \frac{\sqrt{(t+2)^3}}{t+1}$ \(=\sqrt{\frac{(t+2)^3}{(t+1)^2}}\)
Áp dụng BĐT AM-GM:
\((t+2)^3=\left(\frac{t+1}{2}+\frac{t+1}{2}+1\right)^3\geq 27.\frac{(t+1)^2}{4}\)
\(\Rightarrow \text{VT}=\sqrt{\frac{(t+2)^3}{(t+1)^2}}\geq \sqrt{\frac{27}{4}}=\frac{3\sqrt{3}}{2}\) (đpcm)
Dấu "=" xảy ra khi $a=b=c=\frac{1}{\sqrt{3}}$
\(\frac{a^3}{a^2+ab+b^2}=a-\frac{ab\left(a+b\right)}{a^2+ab+b^2}\ge a-\frac{ab\left(a+b\right)}{3ab}=\frac{2a}{3}-\frac{b}{3}\)
Tương tự: \(\frac{b^3}{b^2+bc+c^2}\ge\frac{2b}{3}-\frac{c}{3}\) ; \(\frac{c^3}{c^2+ca+a^2}\ge\frac{2c}{3}-\frac{a}{3}\)
Cộng vế với vế: \(VT\ge\frac{a+b+c}{3}\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c\)
4.
\(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}=\frac{a^4}{ab}+\frac{b^4}{bc}+\frac{c^4}{ac}\ge\frac{\left(a^2+b^2+c^2\right)}{ab+bc+ca}\)
\(\Rightarrow\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\ge\frac{\left(ab+bc+ca\right)^2}{ab+bc+ca}=ab+bc+ca\)
Dấu "=" xảy ra khi \(a=b=c\)
5.
\(\frac{a}{bc}+\frac{b}{ca}\ge2\sqrt{\frac{ab}{bc.ca}}=\frac{2}{c}\) ; \(\frac{a}{bc}+\frac{c}{ab}\ge\frac{2}{b}\) ; \(\frac{b}{ca}+\frac{c}{ab}\ge\frac{2}{a}\)
Cộng vế với vế:
\(2\left(\frac{a}{bc}+\frac{b}{ca}+\frac{c}{ab}\right)\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
\(\Rightarrow\frac{a}{bc}+\frac{b}{ca}+\frac{c}{ab}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
1.
Áp dụng BĐT \(x^2+y^2+z^2\ge xy+yz+zx\)
\(\Rightarrow\left(\sqrt{ab}\right)^2+\left(\sqrt{bc}\right)^2+\left(\sqrt{ca}\right)^2\ge\sqrt{ab}.\sqrt{bc}+\sqrt{ab}.\sqrt{ac}+\sqrt{bc}.\sqrt{ac}\)
\(\Rightarrow ab+bc+ca\ge\sqrt{abc}\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)\)
2.
\(\frac{ab}{c}+\frac{bc}{a}\ge2\sqrt[]{\frac{ab.bc}{ca}}=2b\) ; \(\frac{ab}{c}+\frac{ac}{b}\ge2a\) ; \(\frac{bc}{a}+\frac{ac}{b}\ge2c\)
Cộng vế với vế:
\(2\left(\frac{ab}{c}+\frac{bc}{a}+\frac{ac}{b}\right)\ge2\left(a+b+c\right)\)
\(\Leftrightarrow\frac{ab}{c}+\frac{bc}{a}+\frac{ac}{b}\ge a+b+c\)
3.
Từ câu b, thay \(c=1\) ta được:
\(ab+\frac{b}{a}+\frac{a}{b}\ge a+b+1\)
Lời giải:
Ta có:
\(\text{VT}=\frac{a^3}{b^2+3}+\frac{b^3}{c^2+3}+\frac{c^3}{a^2+3}=\frac{a^3}{b^2+ab+bc+ac}+\frac{b^3}{c^2+ab+bc+ac}+\frac{c^3}{a^2+ab+bc+ac}\)
\(=\frac{a^3}{(b+a)(b+c)}+\frac{b^3}{(c+a)(c+b)}+\frac{c^3}{(a+b)(a+c)}\)
Áp dụng BĐT AM-GM:
\(\frac{a^3}{(b+a)(b+c)}+\frac{b+a}{8}+\frac{b+c}{8}\geq 3\sqrt[3]{\frac{a^3}{8.8}}=\frac{3a}{4}\)
\(\frac{b^3}{(c+a)(c+b)}+\frac{c+a}{8}+\frac{c+b}{8}\geq \frac{3b}{4}\)
\(\frac{c^3}{(a+b)(a+c)}+\frac{a+b}{8}+\frac{a+c}{8}\geq \frac{3c}{4}\)
Cộng theo vế và rút gọn thu được:
\(\text{VT}\geq \frac{a+b+c}{4}\)
Tiếp tục áp dụng BĐT AM-GM: \((a+b+c)^2\geq 3(ab+bc+ac)=9\Rightarrow a+b+c\geq 3\)
Do đó: \(\text{VT}\geq \frac{3}{4}\) (đpcm)
Dấu "=" xảy ra khi $a=b=c=1$