K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 10 2021

ĐKXĐ: \(a,b,c\ne0\)

\(\left(a+b+c\right).\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=2013.\dfrac{1}{2013}\)

\(\Leftrightarrow1+1+1+\dfrac{a}{b}+\dfrac{a}{c}+\dfrac{b}{a}+\dfrac{b}{c}+\dfrac{c}{a}+\dfrac{c}{b}=1\)

\(\Leftrightarrow\dfrac{a^2c+a^2b+b^2c+ab^2+bc^2+ac^2+2abc}{abc}=0\)

\(\Leftrightarrow a^2c+a^2b+b^2c+ab^2+bc^2+ac^2+2abc=0\)

\(\Leftrightarrow ac\left(a+b\right)+ab\left(a+b\right)+bc\left(a+b\right)+c^2\left(a+b\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left[a\left(b+c\right)+c\left(b+c\right)\right]=0\)

\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(a+c\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=-b\\b=-c\\c=-a\end{matrix}\right.\)

Mà \(a+b+c=2013\)

\(\Leftrightarrow\left[{}\begin{matrix}a=2013\\b=2013\\c=2013\end{matrix}\right.\)(đpcm)

 

29 tháng 5 2017

sửa lại đề đi

29 tháng 5 2017

à thiếu...a,b,c>0

giải giúp mình với @Ace Legona

NV
18 tháng 2 2022

\(a^{2012}+b^{2012}+c^{2012}\ge3\sqrt[3]{\left(abc\right)^{2012}}=3\)

\(\Rightarrow\dfrac{1}{a^{2012}+b^{2012}+c^{2012}}\le\dfrac{1}{3}\)

\(\Rightarrow-\dfrac{1}{a^{2012}+b^{2012}+c^{2012}}\ge-\dfrac{1}{3}\)

Lại có:

\(a^{2013}+a^{2013}+...+a^{2013}\left(\text{2012 số hạng}\right)+1\ge2013\sqrt[2013]{\left(a^{2013}\right)^{2012}}=2013.a^{2012}\)

\(\Rightarrow2012.a^{2013}+1\ge2013.a^{2012}\)

Tương tự: \(2012.b^{2013}+1\ge2013.b^{2012}\) ; \(2012.c^{2013}+1\ge2013.c^{2012}\)

Cộng vế với vế:

\(\Rightarrow a^{2013}+b^{2013}+c^{2013}\ge\dfrac{2013\left(a^{2012}+b^{2012}+c^{2012}\right)-3}{2012}\)

\(\Rightarrow A\ge\dfrac{2013\left(a^{2012}+b^{2012}+c^{2012}\right)-3}{2012\left(a^{2012}+b^{2012}+c^{2012}\right)}=\dfrac{2013}{2012}-\dfrac{3}{2012}.\dfrac{1}{a^{2012}+b^{2012}+c^{2012}}\ge\dfrac{2013}{2012}-\dfrac{3}{2012}.\dfrac{1}{3}=1\)

\(A_{min}=1\) khi \(a=b=c=1\)

8 tháng 12 2023

Có \(VT=\dfrac{x^2}{x^3-xyz+2013x}+\dfrac{y^2}{y^3-xyz+2013y}+\dfrac{z^2}{z^3-xyz+2013z}\)

\(\ge\dfrac{\left(x+y+z\right)^2}{x^3+y^3+z^3-3xyz+2013\left(x+y+z\right)}\)

\(=\dfrac{\left(x+y+z\right)^2}{\left(x+y+z\right)\left[x^2+y^2+z^2-\left(xy+yz+zx\right)\right]+2013\left(x+y+z\right)}\)

\(=\dfrac{x+y+z}{x^2+y^2+z^2-\left(xy+yz+zx\right)+3\left(xy+yz+zx\right)}\) 

(vì \(2013=3.671=3\left(xy+yz+zx\right)\))

\(=\dfrac{x+y+z}{x^2+y^2+z^2+2\left(xy+yz+zx\right)}\)

\(=\dfrac{x+y+z}{\left(x+y+z\right)^2}\)

\(=\dfrac{1}{x+y+z}\)

ĐTXR \(\Leftrightarrow\dfrac{1}{x^2-yz+2013}=\dfrac{1}{y^2-zx+2013}=\dfrac{1}{z^2-xy+2013}\)

\(\Leftrightarrow x^2-yz=y^2-zx=z^2-xy\)

\(\Leftrightarrow x=y=z\) (với \(x,y,z>0\))

Vậy ta có đpcm.

30 tháng 5 2017

\(\sum\dfrac{a}{a+\sqrt{\left(a+b\right)\left(c+a\right)}}\le\sum\dfrac{a}{a+\sqrt{ab}+\sqrt{ac}}=\sum\dfrac{\sqrt{a}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}=1\)

12 tháng 10 2017

2) \(\sum\dfrac{x}{x^2-yz+2013}=\sum\dfrac{x^2}{x^3-xyz+2013x}\ge\dfrac{\left(x+y+z\right)^2}{x^3+y^3+z^3-3xyz+2013\left(x+y+z\right)}=\dfrac{\left(x+y+z\right)^2}{\left(x+y+z\right)^3}=\dfrac{1}{x+y+z}\left(đpcm\right)\)

5 tháng 12 2018

Còn câu 1 nữa ạ, ai giải giúp em vớii

Đặt \(\sqrt{2012}=a;\sqrt{2013}=b\)

Theo đề, ta có: \(\dfrac{a^2}{b}+\dfrac{b^2}{a}-\left(a+b\right)\)

\(=\dfrac{a^3+b^3}{ab}-\dfrac{ab\left(a+b\right)}{ab}\)

\(=\dfrac{\left(a+b\right)^3-3ab\left(a+b\right)-ab\left(a+b\right)}{ab}\)

\(=\dfrac{\left(a+b\right)^3-4ab\left(a+b\right)}{ab}\)

\(=\dfrac{\left(a+b\right)\left(a-b\right)^2}{ab}>0\)(đpcm)

21 tháng 8 2018

Đặt biểu thức trên là A

Ta có:

\(A=\sqrt{\dfrac{2014^2+2013^2.2014^2+2013^2}{2014^2}}+\dfrac{2013}{2014}\)

\(=\dfrac{\sqrt{2014^2-2.2013.2014+2013^2+2013^2.2014^2+2.2013.2014}}{2014}+\dfrac{2013}{2014}\)

\(=\dfrac{\sqrt{1+2.2013.2014+\left(2013.2014\right)^2}}{2014}+\dfrac{2013}{2014}\)

\(=\dfrac{\sqrt{\left(2013.2014+1\right)^2}}{2014}+\dfrac{2013}{2014}\)\(=\dfrac{2013.2014+1+2013}{2014}\)\(=2014\)