Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(\sqrt{\dfrac{c}{a+b}}+\sqrt{\dfrac{b}{c+a}}+\sqrt{\dfrac{a}{b+c}}=\dfrac{c}{\sqrt{c\left(a+b\right)}}+\dfrac{b}{\sqrt{b\left(c+a\right)}}+\dfrac{a}{\sqrt{a\left(b+c\right)}}\)Áp dụng BĐT Cauchy :
\(\Rightarrow\dfrac{c}{\sqrt{c\left(a+b\right)}}+\dfrac{b}{\sqrt{b\left(c+a\right)}}+\dfrac{a}{\sqrt{a\left(b+c\right)}}\ge\dfrac{2c}{a+b+c}+\dfrac{2b}{a+b+c}+\dfrac{2a}{a+b+c}=2\)Đấu đẳng thức xảy ra khi \(\left\{{}\begin{matrix}a=b+c\\b=c+a\\c=a+b\end{matrix}\right.\)\(\Rightarrow a+b+c=2\left(a+b+c\right)\Rightarrow1=2\) Vậy dấu đẳng thức không xảy ra
Ta phải chứng minh :
\(\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}< 2\)
ta chứng minh bất đẳng thức phụ sau :
do \(\dfrac{a}{a+b}< 1\Rightarrow\dfrac{a}{a+b}< \dfrac{a+c}{a+b+c}\)
tương tự : \(\dfrac{b}{b+c}< \dfrac{b+a}{a+b+c}\); \(\dfrac{c}{c+a}< \dfrac{c+b}{a+b+c}\)
cộng ba vế BĐT lại ta có đpcm
Lời giải:
Do $a+b+c=1$ nên:
\(\text{VT}=\sqrt{\frac{ab}{c(a+b+c)+ab}}+\sqrt{\frac{bc}{a(a+b+c)+bc}}+\sqrt{\frac{ca}{b(a+b+c)+ac}}\)
\(=\sqrt{\frac{ab}{(c+a)(c+b)}}+\sqrt{\frac{bc}{(a+b)(a+c)}}+\sqrt{\frac{ca}{(b+c)(b+a)}}\)
Áp dụng BĐT AM-GM:
\(\sqrt{\frac{ab}{(c+a)(c+b)}}\leq \frac{1}{2}\left(\frac{a}{c+a}+\frac{b}{c+b}\right)\)
\(\sqrt{\frac{bc}{(a+b)(a+c)}}\leq \frac{1}{2}\left(\frac{b}{a+b}+\frac{c}{c+a}\right)\)
\(\sqrt{\frac{ca}{(b+c)(b+a)}}\leq \frac{1}{2}\left(\frac{c}{b+c}+\frac{a}{b+a}\right)\)
Cộng theo vế:
\(\Rightarrow \text{VT}\leq \frac{1}{2}\left(\frac{a+b}{a+b}+\frac{b+c}{b+c}+\frac{c+a}{c+a}\right)=\frac{3}{2}\) (đpcm)
Dấu "=" xảy ra khi $a=b=c=\frac{1}{3}$
Áp dụng BĐT AM-GM ta có:
\(\dfrac{a^3}{\sqrt{b^2+3}}+\dfrac{a^3}{\sqrt{b^2+3}}+\dfrac{b^2+3}{8}\ge\dfrac{3a^2}{2}\)
Tương tự cho 2 BĐT còn lại ta cũng có:
\(\dfrac{b^3}{\sqrt{c^2+3}}+\dfrac{b^3}{\sqrt{c^2+3}}+\dfrac{c^2+3}{8}\ge\dfrac{3b^2}{2};\dfrac{c^3}{\sqrt{a^2+3}}+\dfrac{c^3}{\sqrt{a^2+3}}+\dfrac{a^2+3}{8}\ge\dfrac{3c^2}{2}\)
Cộng theo vế 3 BĐT trên ta có:
\(2P+\dfrac{a^2+b^2+c^2+9}{8}\ge\dfrac{3\left(a^2+b^2+c^2\right)}{2}\)
\(\Leftrightarrow P\ge\dfrac{\dfrac{3\left(a^2+b^2+c^2\right)}{2}-\dfrac{a^2+b^2+c^2+9}{8}}{2}=\dfrac{3}{2}\)
@DƯƠNG PHAN KHÁNH DƯƠNG
\(a;b;c\ge0\)thỏa mãn \(ab+bc+ca=1\). CMR \(\dfrac{1}{2a+2bc+1}+\dfrac{1}{2b+2ca+1}+\dfrac{1}{2c+2ab+1}\ge1\)
Đảm bảo an ninh :))
Cho a>0,b>0,c>0. Chứng minh \(\sqrt{\dfrac{a}{b+c}}+\sqrt{\dfrac{b}{a+c}}\sqrt{\dfrac{c}{a+b}}\ge2\)
Áp dụng bất đẳng thức Bunyakovsky
\(\Rightarrow\sqrt{\left(\dfrac{8}{a^2}+\dfrac{9b^2}{2}+\dfrac{c^2a^2}{4}\right)\left[\left(\sqrt{2}\right)^2+\left(3\sqrt{2}\right)^2+2^2\right]}\ge\left(\sqrt{\dfrac{4}{a}+9b+ca}\right)^2\)
\(\Leftrightarrow2\sqrt{6}\sqrt{\dfrac{8}{a^2}+\dfrac{9b^2}{2}+\dfrac{c^2a^2}{4}}\ge\dfrac{4}{a}+9b+ac\)
Tương tự ta có \(\left\{{}\begin{matrix}2\sqrt{6}\sqrt{\left(\dfrac{8}{b^2}+\dfrac{9c^2}{2}+\dfrac{a^2b^2}{4}\right)}\ge\dfrac{4}{b}+9c+ab\\2\sqrt{6}\sqrt{\left(\dfrac{8}{c^2}+\dfrac{9a^2}{2}+\dfrac{b^2c^2}{4}\right)}\ge\dfrac{4}{c}+9a+bc\end{matrix}\right.\)
\(\Rightarrow2\sqrt{6}S\ge\dfrac{4}{a}+9a+\dfrac{4}{b}+9b+\dfrac{4}{c}+9c+ab+bc+ac\)
\(\Leftrightarrow2\sqrt{6}S\ge\dfrac{4}{a}+a+8a+\dfrac{4}{b}+b+8b+\dfrac{4}{c}+c+8c+ab+bc+ca\)
Áp dụng bất đẳng thức Cauchy
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{4}{a}+a\ge2\sqrt{4}=4\\\dfrac{4}{b}+b\ge2\sqrt{4}=4\\\dfrac{4}{c}+c\ge2\sqrt{4}=4\end{matrix}\right.\)
\(\Rightarrow\dfrac{4}{a}+a+8a+\dfrac{4}{b}+b+8b+\dfrac{4}{c}+c+8c+ab+bc+ca\ge12+8a+8b+8c+ab+bc+ac\)
\(\Rightarrow2\sqrt{6}S\ge12+8a+8b+8c+ab+bc+ac\)
\(\Leftrightarrow2\sqrt{6}S\ge12+2a+bc+2b+ac+2c+ab+6\left(a+b+c\right)\)
Áp dụng bất đẳng thức Cauchy
\(\Rightarrow2a+bc\ge2\sqrt{2abc}\)
Tượng tự ta có \(2b+ac\ge2\sqrt{2abc}\) ; \(2c+ab\ge2\sqrt{2abc}\)
\(\Rightarrow12+2a+bc+2b+ac+2c+ab+6\left(a+b+c\right)\ge6\left(a+b+c+\sqrt{2abc}\right)+12\)
\(\Rightarrow2\sqrt{6}S\ge6\left(a+b+c+\sqrt{2abc}\right)+12\)
Theo đề bài ta có \(a+b+c+\sqrt{2abc}\ge10\)
\(\Rightarrow6\left(a+b+c+\sqrt{2abc}\right)+12\ge72\)
\(\Rightarrow S\ge\dfrac{72}{2\sqrt{6}}=6\sqrt{6}\) ( đpcm )
Dấu " = " xảy ra khi \(a=b=c=2\)
Mình làm được rồi, cảm ơn các bạn