Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác BEFC có FE//BC
nên BEFC là hình thang
b: Xét tứ giác EFHK có
A là trung điểm của đường chéo KF
A là trung điểm của đường chéo EH
Do đó: EFHK là hình bình hành
Suy ra: HK//EF
mà EF//BC
nên HK//BC
Xét tứ giác BCHK có HK//BC
nên BCHK là hình thang
a: Xét tứ giác BEFC có FE//BC
nên BEFC là hình thang
b: Xét tứ giác EFHK có
A là trung điểm của đường chéo KF
A là trung điểm của đường chéo EH
Do đó: EFHK là hình bình hành
=> HK//EF
mà EF//BC
=> HK//BC
Xét tứ giác BCHK có:
HK//BC
=>BCHK là hình thang
a: Xét ΔBNQ có
C là trung điểm của BQ
CA//NQ
Do đó: A là trung điểm của NB
Xét ΔCPM có
B là trung điểm của CP
CA//MP
DO đó: A là trung điểm của CM
Xét tứ giác BMNC có
A là trung điểm chung của BN và MC
nên BMNC là hình bình hành
b: Để ANKM là hình bình hành
nên AM//KN và AN//KM
=>AB//MK và AB=MK
=>ABMK là hình bình hành
=>AI//BM
Xét ΔCBM có
A là trung điểm của CA
AI//BM
DO đó; I là trung điểm của BC
1. ta có AD = BC (gt)
mà DH = BF (gt)
=> AH =FC
xét ▲AHE và ▲FCG, có:
AE = CG (gt)
góc A = góc C (gt)
AH = FC (cmt)
=>▲AHE = ▲FCG (c.g.c)
=>HE = FG (2 cạnh t/ứ)
cmtt : HG = EF
Vậy EFGH là hbh (đpcm)
giải
a) Tứ giác BHKC có : 2 đường chéo BK và CH cắt nhau tại A tại trung điểm mỗi đường
=> BHKC là hình bình hành
b) Tứ giác AHIK là hình bình hành nên AK//IH và AK =IH
=> AB // IH và AB =IH
Tứ giác ABIH là hình bình hành vậy IA // HB
=> AM là đường trung bình của tam giác BHC
=> MB = MC
c) chịu ko biết làm
a) Tứ giác BHKC có : 2 đường chéo BK và CH cắt nhau tại A tại trung điểm mỗi đường
=> BHKC là hình bình hành
b) Tứ giác AHIK là hình bình hành nên AK//IH và AK =IH
=> AB // IH và AB =IH
Tứ giác ABIH là hình bình hành vậy IA // HB
=> AM là đường trung bình của tam giác BHC
=> MB = MC
c) chịu
a: Xét ΔABC và ΔAEF có
AB=AE
\(\widehat{BAC}=\widehat{EAF}\)
AC=AF
Do đó: ΔABC=ΔAEF
Suy ra: \(\widehat{ABC}=\widehat{AEF}\)
mà hai góc này là hai góc ở vị trí so le trong
nên FE//BC
Bài 1:
a: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình
=>MN//BC
hay BMNC là hình thang
b: Xét ΔABK có MI//BK
nên MI/BK=AM/AB=1/2(1)
XétΔACK có NI//CK
nên NI/CK=AN/AC=1/2(2)
Từ (1)và (2) suy ra MI/BK=NI/CK
mà MI=NI
nên BK=CK
hay K là trug điểm của BC
Xét ΔABC có
K là trung điểm của BC
M là trung điểm của AB
Do đó: KM là đường trung bình
=>KM//AN và KM=AN
hay AMKN là hình bình hành
a) Xét tứ giác EFCB có
EF//BC (gt)
=> EFCB là hình thang
b)
Xét tam giác KHA và tam giác FAE có
KA=AF (gt)
AH=AE(gt)
góc KAH = góc EAF (đđ)
=> tam giác KHA = tam giác FAE ( c-g-c)
=> góc HKA= góc AFE( c-g-t-ư) (1)
mặt khác ta có EF//BC
=> góc AFE = góc ACB ( đồng vị ) (2)
(1)&(2)=> góc HKA = góc ACB
mà chúng ở vị trí so le trong nên KH//BC
xét tức giác KHBC có KH//BC (cmt)
=> KHBC là hình thang