K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 7 2019

a/ tự vẽ: M,A,B thẳng hàng, MA=2MB=> B là TĐ MA

N,A,C thẳng hàng, NA= 2CN/3

b/ tính cái j theo vecto AC và AB z?

c/ G là cái j

VT lại đề bài cái coi :))

3 tháng 12 2022

\(\overrightarrow{AB}=3\overrightarrow{AM};\overrightarrow{CD}=2\overrightarrow{CN};\overrightarrow{BI}=\frac{6}{11}\overrightarrow{BC}\)

Có tứ giác ABCD là hbh=> \(\overrightarrow{CD}=\overrightarrow{BA}\Rightarrow\overrightarrow{BA}=2\overrightarrow{CN}\)

Có G là trọng tâm tam giác BMN

\(\Rightarrow\overrightarrow{GB}+\overrightarrow{GM}+\overrightarrow{GN}=\overrightarrow{0}\)

\(\Leftrightarrow3\overrightarrow{GA}+\overrightarrow{AB}+\overrightarrow{AN}+\overrightarrow{AM}=\overrightarrow{0}\)\(\Leftrightarrow3\overrightarrow{GA}+\overrightarrow{AB}+\overrightarrow{AC}+\overrightarrow{CN}+\frac{1}{3}\overrightarrow{AB}=\overrightarrow{0}\)

\(\Leftrightarrow3\overrightarrow{GA}+\frac{4}{3}\overrightarrow{AB}+\frac{1}{2}\overrightarrow{BA}+\overrightarrow{AB}+\overrightarrow{AD}=\overrightarrow{0}\)

\(\Leftrightarrow3\overrightarrow{AG}=\frac{-11}{6}\overrightarrow{AB}-\overrightarrow{AD}\Leftrightarrow\overrightarrow{AG}=\frac{-11}{18}\overrightarrow{AB}-\frac{1}{3}\overrightarrow{AD}\)

\(\overrightarrow{AN}=\overrightarrow{AC}+\overrightarrow{CN}=\frac{1}{2}\overrightarrow{BA}+\overrightarrow{AB}+\overrightarrow{AD}=\frac{1}{2}\overrightarrow{AB}+\overrightarrow{AD}\)

b/ \(\overrightarrow{AG}=\frac{-11}{18}\overrightarrow{AB}-\frac{1}{3}\overrightarrow{AD}\)

\(\overrightarrow{AI}=\overrightarrow{AB}+\overrightarrow{BI}=\overrightarrow{AB}+\frac{6}{11}\overrightarrow{BC}=\overrightarrow{AB}+\frac{6}{11}\overrightarrow{AD}\)

\(\overrightarrow{AG}=-\frac{11}{18}\overrightarrow{AI}\Rightarrow\) thẳng hàng

30 tháng 11 2022

Tính AG còn sai, mà AG=-AI vẫn bảo thẳng hàng. Không biết làm thì đừng thể hiện

NV
29 tháng 10 2020

Câu 1:

\(AC=\sqrt{AB^2+BC^2}=\sqrt{2}\)

\(\Rightarrow\overrightarrow{AB}.\overrightarrow{AC}=AB.AC.cos45^0=1.\sqrt{2}.\frac{\sqrt{2}}{2}=1\)

Đáp án D sai

Câu 2:

\(BN=\frac{1}{2}BM=\frac{1}{4}BC\Rightarrow4\overrightarrow{BN}=\overrightarrow{BC}\)

Ta có:

\(4\overrightarrow{AN}=4\left(\overrightarrow{AB}+\overrightarrow{BN}\right)=4\overrightarrow{AB}+4\overrightarrow{BN}=4\overrightarrow{AB}+\overrightarrow{BC}\)

\(=4\overrightarrow{AB}+\overrightarrow{BA}+\overrightarrow{AC}=4\overrightarrow{AB}-\overrightarrow{AB}+\overrightarrow{AC}=3\overrightarrow{AB}+\overrightarrow{AC}\)

Đáp án A đúng

a: \(\overrightarrow{AB}+\overrightarrow{DC}=\overrightarrow{AI}+\overrightarrow{IB}+\overrightarrow{DI}+\overrightarrow{IC}\)

\(=\overrightarrow{AI}+\overrightarrow{DI}=-\left(\overrightarrow{IA}+\overrightarrow{ID}\right)=-2\overrightarrow{IM}=2\overrightarrow{MI}\)

\(\overrightarrow{AB}+\overrightarrow{DC}=\overrightarrow{AC}+\overrightarrow{DB}\)

\(\Leftrightarrow\overrightarrow{AB}-\overrightarrow{AC}=\overrightarrow{DB}-\overrightarrow{DC}\)

\(\Leftrightarrow\overrightarrow{CA}+\overrightarrow{AB}=\overrightarrow{CD}+\overrightarrow{DB}=\overrightarrow{CB}\)(luôn đúng)

=>ĐPCM

b: \(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}+\overrightarrow{GD}\)

\(=2\cdot\overrightarrow{GM}+2\cdot\overrightarrow{GI}=\overrightarrow{0}\)

18 tháng 11 2022

Bài 2:

Gọi M là trung điểm của AB,N là trung điểm của CD

vecto GA+vecto GB+vecto GC+vecto GD=vecto 0

=>2 vetco GM+2 vecto GN=vecto 0

=>vecto GM+vecto GN=vecto 0

=>G là trung điểm của MN