K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 1 2019

a) Có: \(\left\{{}\begin{matrix}\widehat{MAC}=90^0+\widehat{BAC}\left(\widehat{MAB}=90^0\right)\\\widehat{BAN}=90^0+\widehat{BAC}\left(\widehat{CAN}=90^0\right)\end{matrix}\right.\Rightarrow\widehat{MAC}=\widehat{BAN}\)

- Xét \(\Delta AMC\)\(\Delta ABN\)\(\left\{{}\begin{matrix}AM=AB\left(gt\right)\\\widehat{MAC}=\widehat{BAN}\left(cmt\right)\\AN=AC\left(gt\right)\end{matrix}\right.\)

\(\Rightarrow\Delta AMC=\Delta ABN\left(c.g.c\right)\)

Vậy \(\Delta AMC=\Delta ABN\)

b) - Gọi D là giao điểm của CM và AB; K là giao điểm của CM và BN.

- Có: \(\Delta AMC=\Delta ABN\) (theo a)

\(\Rightarrow\widehat{AMC}=\widehat{ABN}\) hay \(\widehat{AMD}=\widehat{HBK}\)

- Xét \(\Delta AMD\) vuông tại A có \(\widehat{AMD}+\widehat{ADM}=90^0\) (định lý tam giác vuông)

\(\widehat{AMD}=\widehat{DBK}\left(cmt\right)\); \(\widehat{ADM}=\widehat{BDK}\)(hai góc đối đỉnh)

Suy ra \(\widehat{DBK}+\widehat{BDK}=90^0\)

- Xét \(\Delta BDK\)\(\widehat{DBK}+\widehat{BDK}+\widehat{BKD}=180^0\) (định lý tổng 3 góc)

\(\Rightarrow90^0+\widehat{BKD}=180^0\)

\(\Rightarrow\widehat{BKD}=90^0\)

hay \(BN\perp CM\)

Vậy \(BN\perp CM\)

c) Kẻ \(ME\perp AH\) tại E; \(NF\perp AH\) tại F. Gọi O là giao điểm của MN và AH.

- Có: \(\widehat{BAH}+\widehat{MAB}+\widehat{MAE}=180^0\) (Ba điểm H; A; E thẳng hàng)

\(\Rightarrow\widehat{BAH}+90^0+\widehat{MAE}=180^0\)

\(\Rightarrow\widehat{BAH}+\widehat{MAE}=90^0\left(1\right)\)

- Xét \(\Delta ABH\) vuông tại H có \(\widehat{BAH}+\widehat{ABH}=90^0\) (định lý tam giác vuông) \(\left(2\right)\)

Từ \(\left(1\right)\)\(\left(2\right)\) suy ra \(\widehat{MAE}=\widehat{ABH}\)

- Xét \(\Delta MAE\) vuông tại E và \(\Delta ABH\) vuông tại H có \(\left\{{}\begin{matrix}AM=AB\left(gt\right)\\\widehat{MAE}=\widehat{ABH}\left(cmt\right)\end{matrix}\right.\)

\(\Rightarrow\Delta MAE=\Delta ABH\) (cạnh huyền - góc nhọn)

\(\Rightarrow ME=AH\) (hai cạnh tương ứng)

Chứng minh tương tự, ta có: \(\Delta AFN=\Delta CHA\) (cạnh huyền - góc nhọn)

\(\Rightarrow NF=AH\) (hai cạnh tương ứng)

- Có \(\left\{{}\begin{matrix}ME=AH\left(cmt\right)\\NF=AH\left(cmt\right)\end{matrix}\right.\Rightarrow ME=NF\)

- Có: \(\left\{{}\begin{matrix}ME\perp EF\left(vẽ\right)\\NF\perp EF\left(vẽ\right)\end{matrix}\right.\Rightarrow ME//NF\) (quan hệ vuông góc - song song)

\(\Rightarrow\widehat{OME}=\widehat{ONF}\) (hai góc so le trong)

- Xét \(\Delta OME\) vuông tại E và \(\Delta ONF\) vuông tại F có \(\left\{{}\begin{matrix}ME=NF\\\widehat{OME}=\widehat{ONF}\end{matrix}\right.\left(cmt\right)\Rightarrow\Delta OME=\Delta ONF\left(cgv-gnk\right)\)

\(\Rightarrow OM=ON\)(hai cạnh tương ứng)

hay AH đi qua trung điểm O của MN

Vậy AH đi qua trung điểm của MN

26 tháng 1 2019

Cho mình xin cái hình

21 tháng 12 2021

a) xét tg AMC và tg ABN có

MA=BA(gt)

CA=AN(gt)

ˆMAC=ˆBAN(doˆMAB+ˆBAC=ˆNAC+ˆBAC)MAC^=BAN^(doMAB^+BAC^=NAC^+BAC^)

=>(kết luận)...

b)gọi I là giao điểm của MC và BN

gọi giao điểm của BA và MI là F

vì ΔAMC=ΔABNΔAMC=ΔABNnên

ˆFMA=ˆFBIFMA^=FBI^

mà ˆFMA+ˆFMB=45OFMA^+FMB^=45O

=>ˆFBI+ˆIMB=45OFBI^+IMB^=45O

Xét ΔIMBΔIMBcó góc ˆIMB+ˆMBI+ˆBIMIMB^+MBI^+BIM^= 180O

Mà ˆIMB+ˆMBIIMB^+MBI^=900

=>...

1 tháng 3 2019

Lộn xíu :v

Choa sửa lại cái đề pài :>

Cho tam giác ABC , góc A < 90o . Vẽ ra ngoài tam giác ABC các tam giác vuông cân tại A là tam giác AMB và tam giác ANC ( đoạn đầu tiên ó )

8 tháng 7 2019

a) xét tg AMC và tg ABN có

MA=BA(gt)

CA=AN(gt)

\(\widehat{MAC}=\widehat{BAN}\left(do\widehat{MAB}+\widehat{BAC}=\widehat{NAC}+\widehat{BAC}\right)\)

=>(kết luận)...

b)gọi I là giao điểm của MC và BN

gọi giao điểm của BA và MI là F

vì \(\Delta AMC=\Delta ABN\)nên

\(\widehat{FMA}=\widehat{FBI}\)

mà \(\widehat{FMA}+\widehat{FMB}=45^O\)

=>\(\widehat{FBI}+\widehat{IMB}=45^O\)

Xét \(\Delta IMB\)có góc \(\widehat{IMB}+\widehat{MBI}+\widehat{BIM}\)= 180O

Mà \(\widehat{IMB}+\widehat{MBI}\)=900

=>...

21 tháng 12 2021

a) xét tg AMC và tg ABN có

MA=BA(gt)

CA=AN(gt)

ˆMAC=ˆBAN(doˆMAB+ˆBAC=ˆNAC+ˆBAC)MAC^=BAN^(doMAB^+BAC^=NAC^+BAC^)

=>(kết luận)...

b)gọi I là giao điểm của MC và BN

gọi giao điểm của BA và MI là F

vì ΔAMC=ΔABNΔAMC=ΔABNnên

ˆFMA=ˆFBIFMA^=FBI^

mà ˆFMA+ˆFMB=45OFMA^+FMB^=45O

=>ˆFBI+ˆIMB=45OFBI^+IMB^=45O

Xét ΔIMBΔIMBcó góc ˆIMB+ˆMBI+ˆBIMIMB^+MBI^+BIM^= 180O

Mà ˆIMB+ˆMBIIMB^+MBI^=900

=>...

21 tháng 12 2021

a) xét tg AMC và tg ABN có

MA=BA(gt)

CA=AN(gt)

ˆMAC=ˆBAN(doˆMAB+ˆBAC=ˆNAC+ˆBAC)MAC^=BAN^(doMAB^+BAC^=NAC^+BAC^)

=>(kết luận)...

b)gọi I là giao điểm của MC và BN

gọi giao điểm của BA và MI là F

vì ΔAMC=ΔABNΔAMC=ΔABNnên

ˆFMA=ˆFBIFMA^=FBI^

mà ˆFMA+ˆFMB=45OFMA^+FMB^=45O

=>ˆFBI+ˆIMB=45OFBI^+IMB^=45O

Xét ΔIMBΔIMBcó góc ˆIMB+ˆMBI+ˆBIMIMB^+MBI^+BIM^= 180O

Mà ˆIMB+ˆMBIIMB^+MBI^=900

=>...

22 tháng 12 2021

a) xét tg AMC và tg ABN có

MA=BA(gt)

CA=AN(gt)

ˆMAC=ˆBAN(doˆMAB+ˆBAC=ˆNAC+ˆBAC)MAC^=BAN^(doMAB^+BAC^=NAC^+BAC^)

=>(kết luận)...

b)gọi I là giao điểm của MC và BN

gọi giao điểm của BA và MI là F

vì ΔAMC=ΔABNΔAMC=ΔABNnên

ˆFMA=ˆFBIFMA^=FBI^

mà ˆFMA+ˆFMB=45OFMA^+FMB^=45O

=>ˆFBI+ˆIMB=45OFBI^+IMB^=45O

Xét ΔIMBΔIMBcó góc ˆIMB+ˆMBI+ˆBIMIMB^+MBI^+BIM^= 180O

Mà ˆIMB+ˆMBIIMB^+MBI^=900

=>...

21 tháng 12 2021

a) xét tg AMC và tg ABN có

MA=BA(gt)

CA=AN(gt)

ˆMAC=ˆBAN(doˆMAB+ˆBAC=ˆNAC+ˆBAC)MAC^=BAN^(doMAB^+BAC^=NAC^+BAC^)

=>(kết luận)...

b)gọi I là giao điểm của MC và BN

gọi giao điểm của BA và MI là F

vì ΔAMC=ΔABNΔAMC=ΔABNnên

ˆFMA=ˆFBIFMA^=FBI^

mà ˆFMA+ˆFMB=45OFMA^+FMB^=45O

=>ˆFBI+ˆIMB=45OFBI^+IMB^=45O

Xét ΔIMBΔIMBcó góc ˆIMB+ˆMBI+ˆBIMIMB^+MBI^+BIM^= 180O

Mà ˆIMB+ˆMBIIMB^+MBI^=900

=>...