Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B1, a, Xét tứ giác AEHF có: góc AFH = 90o ( góc nội tiếp chắn nửa đường tròn)
góc AEH = 90o (góc nội tiếp chắn nửa đường tròn )
Góc CAB = 90o ( tam giác ABC vuông tại A)
=> tứ giác AEHF là hcn(đpcm)
b, do AEHF là hcn => cũng là tứ giác nội tiếp => góc AEF = góc AHF ( hia góc nội tiếp cùng chắn cung AF)
mà góc AHF = góc ACB ( cùng phụ với góc FHC)
=> góc AEF = góc ACB => theo góc ngoài tứ giác thì tứ giác BEFC là tứ giác nội tiếp (đpcm)
c,gọi M là giao điểm của AI và EF
ta có:góc AEF = góc ACB (c.m.t) (1)
do tam giác ABC vuông tại A và có I là trung điểm của cạng huyền CB => CBI=IB=IA
hay tam giác IAB cân tại I => góc MAE = góc ABC (2)
mà góc ACB + góc ABC + góc BAC = 180o (tổng 3 góc trong một tam giác)
=> ACB + góc ABC = 90o (3)
từ (1) (2) và (3) => góc AEF + góc MAE = 90o
=> góc AME = 90o (theo tổng 3 góc trong một tam giác)
hay AI uông góc với EF (đpcm)
O A B E D C H
Vì góc AED chắn nửa đường tròn tâm O ( AD )
=> \(\widehat{AED}=90^0\)
=> AE \(\perp\)AD hay AH \(\perp\)ED
Mà AH \(\perp\)BC
=> ED // BC
Vì góc ACD chắn nửa đường tròn => \(\widehat{ACD}=90^0\)
Ta có : \(\widehat{BEA}=\widehat{BCA}\)
Mặt khác : \(\widehat{BEA}+\widehat{EBC}=90^0;\widehat{BCA}+\widehat{BCD}=90^0\)
=> \(\widehat{EBC}=\widehat{BCD}\)
Xét hình thang BCDE ( ED // BC ) có :
\(\widehat{EBC}=\widehat{BCD}\)(hai góc cùng kề cạnh BC )
=> BCDE là hình thang cân
a: góc NED+góc NCD=180 độ
=>NEDC nội tiếp
b: ΔAHB vuôg tại H có HM vuông góc AB
nên AM*AB=AH^2
ΔAHC vuông tại H có HN vuông góc AC
nên AN*AC=AH^2
=>AM*AB=AN*AC