K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 4 2020

Bài 2 : 

vì BE vuông góc BD nên BE là đường phân giác ngoài của tam giác ABC.
theo tính chất đường phân giác (ngoài) ta có :

AEEB=ECBCAEEB=ECBC

⇒⇒ CE=AB.BCABCE=AB.BCAB

⇒⇒ CE=AE.23CE=AE.23

⇒⇒ 3CE=(CE+AC).23CE=(CE+AC).2

⇒⇒ 3CE=2CE+2AC3CE=2CE+2AC

⇒⇒ CE=2AC=6(cm) 

Bài 1: Giải

Nếu cạnh lớn nhất của tam giác đã cho là cạnh bé nhất của tam giác đồng dạng với nó thì ta có tỉ số đồng dạng đã cho là: (Gọi tạm tam giác có cạnh 12,16,18 m là tgiac 1, tgiac mới là tgiac 2)

k=Δ1Δ2=1218=23k=Δ1Δ2=1218=23

Chu vi của tam giác 1 là:

12+16+18=46(m)12+16+18=46(m)

⇒⇒ Chu vi của tam giác 2 là: 46:23=69(m)46:23=69(m)

Cạnh thứ hai của tam giác đồng dạng (2) là:

16:23=24(m)16:23=24(m)

Cạnh lớn nhất của tam giác đồng dạng (2) đó là:

69−24−18=27(m

Bài 3 tớ k bt lm 

15 tháng 4 2020

copy mạng nhớ ghi nguồn nhé bạn =))))

học tốt bro :))

~~

3 tháng 4 2017

a) Xét tam giác ABC và tam giác HBA
B là góc chung
Góc BAC=góc AHB= 90o

=> tam giác ABC đồng dạng tam giác HBA( g.g)
 

b) Áp dụng định lý Py-ta-go vào tam giác ABC vuông tại A, ta có
BC2=AC2+AB2
BC2=82+62
BC2=1002=10cm
Xét ta

7 tháng 4 2017

Mình bổ sung nha:

b) Xét tam giác AHB và tam giác ABC có:

Góc BAC = Góc BHA = 900

Góc B chung

Suy ra tam giác AHB đồng dạng tam giác CAB(g.g)

Suy ra AH/AC = AB/BC

Hay AH/8 = 6/10

Suy ra AH= 8*6/10 = 48/10 = 4,8 (cm)

c) Trong tam giác ABH vuông tại H, nên theo định lý Py- ta go ta có:

AB^2= AH^2+BH^2

Suy ra : BH^2= AB^2 - AH^2= \(\sqrt{6^2-4,8^2}=\sqrt{36-23,04=\sqrt{12,96}}\)

Suy ra BH= 3,6 (cm)

Ta có C ABC / C HBA = AB+AC+BC / AB+AH+BH = (6+8+10 )/ (6+4,8+3,6)=24/14,4=5/3

Vậy C ABC/ C HBA = 5/3  

21 tháng 4 2020

a,bc và pk

cạnh 156 tỉ số 16

58

76

23 tháng 3 2022
ABC cạnh 156 tỉ số 16 58 78
30 tháng 6 2018

Vì tam giác ABC và tam giác A’B’C’ đồng dạng nên:

Bài 4.1 trang 90 SBT Toán 8 Tập 2

Vậy chu vi tam giác ABC là: AB + AC + BC = 10,75 + 4,24 = 14,99(cm)

Chọn C

8 tháng 3 2023

`a)` Tỉ số đồng dạng `k=3/5`

`=>[C_[\triangle ABC]]/[C_[\triangle A'B'C']]=5/3`

`b)` Chu vi `\triangle A'B'C'` là: `C_[\triangle A'B'C]=40. 3/8=15(dm)`

      Chu vi `\triangle ABC` là: `C_[\triangle ABC]=40-15=25(dm)`