Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét (O) có
ΔBDC nội tiếp
BC là đường kính
Do đó: ΔDCB vuông tại D
=>CD\(\perp\)DB tại D và \(\widehat{CDB}=90^0\)
=>CD\(\perp\)AB tại D
Xét (O) có
ΔBEC nội tiếp
BC là đường kính
Do đó: ΔBEC vuông tại E
=>\(\widehat{BEC}=90^0\)
ΔBEC vuông tại E
=>BE\(\perp\)EB tại E
=>BE\(\perp\)AC tại E
b:
Xét tứ giác ADHE có
\(\widehat{ADH}+\widehat{AEH}=90^0+90^0=180^0\)
=>ADHE là tứ giác nội tiếp đường tròn đường kính AH
=>A,D,H,E cùng thuộc đường tròn đường kính AH
=>I là trung điểm của AH
c: Xét ΔABC có
BE,CD là đường cao
BE cắt CD tại H
Do đó: H là trực tâm của ΔABC
=>AH\(\perp\)BC tại K
Xét ΔHAC có
I,M lần lượt là trung điểm của HA,HC
=>IM là đường trung bình của ΔHAC
=>IM//AC
Xét ΔBHC có
M,O lần lượt là trung điểm của CH,CB
=>MO là đường trung bình của ΔBHC
=>OM//BH
OM//BH
BH\(\perp\)AC
Do đó: OM\(\perp\)AC
IM//AC
OM\(\perp\)AC
Do đó: IM\(\perp\)OM
d: ID=IH
=>ΔDIH cân tại I
=>\(\widehat{IDH}=\widehat{IHD}\)
mà \(\widehat{IHD}=\widehat{KHC}\)(hai góc đối đỉnh)
và \(\widehat{KHC}=\widehat{CBD}\left(=90^0-\widehat{DCB}\right)\)
nên \(\widehat{IDH}=\widehat{CBD}\)
OD=OC
=>ΔODC cân tại O
=>\(\widehat{ODC}=\widehat{OCD}\)
=>\(\widehat{HDK}=\widehat{DCB}\)
\(\widehat{IDK}=\widehat{IDH}+\widehat{KDH}\)
\(=\widehat{DBC}+\widehat{DCB}=90^0\)
=>ID là tiếp tuyến của (O)(1)
Xét ΔIDO và ΔIEO có
ID=IE
DO=EO
IO chung
Do đó: ΔIDO=ΔIEO
=>\(\widehat{IDO}=\widehat{IEO}=90^0\)
=>IE là tiếp tuyến của (O)(2)
Từ (1),(2) suy ra các tiếp tuyến tại D và E của (O) cắt nhau tại I(ĐPCM)
c: Theo câu b, ta được: H là tâm đường tròn ngoại tiếp ngũ giác DEKFO
OH vuông góc MN
=>MN là đường kính của (H)
=>HM=HN
H A B C D E O F
a) Xét tam giác AEC và tam giác ADB
có:
\(\widehat{AEC}=\widehat{ADB}=90^o\)
\(\widehat{EAC}=\widehat{DAB}\)( đối đỉnh)
=> \(\Delta AEC~\Delta ADB\Rightarrow\frac{AE}{AD}=\frac{AC}{AB}\Rightarrow AE.AB=AD.AC\)
b) Xét tam giác HCB có hai đường cao CD và BE cắt nhau tại A
=> A là trực tâm tam giác ACB
=> HA vuông BC
=> AF vuông BC
Xét tứ giác BFEH có:
\(\widehat{BFH}=\widehat{HEB}=90^o\)
=> BFEH nội tiếp
c) Ta có: \(\widehat{EOC}=2\widehat{EBC}\)( góc ở tâm có độ lớn gấp 2 lần góc nội tiếp cùng chắn một cung)
Xét tứ giác ADBF có: \(\widehat{ADB}+\widehat{AFB}=90^o+90^o=180^o\)
=> ADBF nội tiếp
=> \(\widehat{ABF}=\widehat{ADF}\)( cùng chắn cung AF) hay \(\widehat{EBC}=\widehat{CDF}\)
Mặt khác \(\widehat{EDC}=\widehat{EBC}\)( cùng chắn cung EC)
=> \(\widehat{EOC}=2.\widehat{EBC}=\widehat{CDF}+\widehat{EDC}=\widehat{EDF}\)
=> \(\widehat{FOE}+\widehat{FDE}=\widehat{FOE}+\widehat{EOC}=180^o\)( hai góc bù nhau)
=> Tứ giác DEOF nội tiếp